The probability of choosing the unknot among 2-bridge knots

Moshe Cohen
www.technion.ac.il/~mcohen/

Joint with Sunder Ram Krishnan

Technion - Israel Institute of Technology

Glances Manifolds, Jagiellonian University, July 17th, 2015

The probability of choosing the unknot among 2-bridge knots

Moshe Cohen

www.technion.ac.il/~mcohen/

Joint with Sunder Ram Krishnan

Technion - Israel Institute of Technology

Glances Manifolds, Jagiellonian University, July 17th, 2015

Overview

Given a billiard table diagram $T(3, n+1)$,

choose its n crossings uniformly at random.

We give an exact formula for the probability of obtaining a knot.

클

Overview

Trefoil

Figure eight

Overview

Outline

I. Motivation and other random knot models
II. Chebyshev knots $T(a, b)$

- [Koseleff-Pecker '11]

Present any k-bridge knot by $T(a, b)$ for $a=2 k-1$

- [C. '14] Jones polynomials of $T(3, b)$ and $T(5, b)$

III. Random billard table diagrams $T(3, b)$
- [C.-Krishnan '15] Probability of any 2-bridge knot

The probabilistic method has been used in graph theory to try to understand very large graphs.

- [Erdös - Rényi] random graph model

This method has seen some early results in topology.

- [Linial-Meshulam '06] random k-complexes
- [Costa-Farber '14] generalized random k-cxes
- [Dunfield-Thurston(s) '06] random 3-manifolds

The goal is to find evidence to support or refute the following.

Conjecture:

The Jones polynomial detects the unknot.

I. Random knot models from the literature / Physical

- [AMS Special Session in Vancouver '93] and [Series on Knots and Everything '94]
- [Dobay-Sottas-Dubochet-Stasiak '01,'02] random walk in \mathbb{Z}^{3}

- Slightly different settings by, e.g., [Buck (Gregory) '94] [Deguchi-Tsurusaki '94], [Aliashvili' '05] [Arsuaga-Blackstone-Diao-Hinson-Karadayi-Saito '07]

I. Random knot models from the literature / Physical

[Raymer-Smith '07] "Spontaneous knotting of an agitated string"

I. Random knot models from the literature / Braid group

Random walks on Cayley graphs

- e.g. [Nechaev-Grosberg-Vershik '96], [Voituriez '02], [Nechaev-Voituriez '03], [Mairesse-Matheus '07]

I. New random knot diagrams

- 2011 grant proposal [C.-Linial-Nowik]
- [Even-Zohar-Hass-Linial-Nowik '14] random Petaluma knots

- [Dunfield-Obeidin-et al] from random 4-valent graphs
- [Babson-Westenberger] random projections of high-dimensional knots

II. Parametrizations

A Lissajous knot is of the form

$$
\begin{aligned}
& x=\cos \left(\eta_{x} t+\phi_{x}\right), \\
& y=\cos \left(\eta_{y} t+\phi_{y}\right), \\
& z=\cos \left(\eta_{z} t+\phi_{z}\right),
\end{aligned}
$$

where $t, \phi_{i} \in \mathbb{R}$, $\eta_{i} \in \mathbb{Z}$ are coprime.

Not all knots are Lissajous, however, e.g. torus knots and the figure eight.

Studied by, e.g., [Bogle-Hearst-Jones-Stoilov '94], [Jones-Przytycki '98], [Przytycki '98].

A Chebyshev knot is $x=T_{a}(t), y=T_{b}(t), z=T_{c}(t+\varphi)$, where $t \in \mathbb{R}, a, b, c \in \mathbb{Z}$ are coprime, $\varphi \in \mathbb{R}$ a constant, and $T_{n}\left(\cos t^{\prime}\right)=\cos \left(n t^{\prime}\right)$ is the n-th Chebyshev poly (first kind).

Proposition [Koseleff-Pecker '11]:

All knots are Chebyshev.
(More on this later.)

A billiard knot is the trajectory of a ball traveling in a 3D domain at a straight line, reflecting perfectly off the walls at rational \angle.
Proposition [Jones-Przytycki '98]:
Lissajous knots are precisely the billiard knots in a cube.

MakerHome: One 3D print every day from home, for a year
Monday, May 26, 2014: Day 273 - Lissajous conformation of 5_{2}.

II. Billiards / Main Diagram

Chebyshev knots can be projected onto billiard table diagrams $T(a, b)$.

To simplify, we replace $c \in \mathbb{N}$ and $\phi \in \mathbb{R}$ with a string of,+of length N corresponding to the $N=\frac{1}{2}(a-1)(b-1)$ crossings.

II. Natural indexing by bridge number

Proposition [Koseleff-Pecker '11]:

For knot K and $\operatorname{br}(K) \leq m \in \mathbb{N}, K$ is some $T(a, b)$
where $a=2 m-1$ and $b \equiv 2(\bmod 2 a)$.

Theorem [Koseleff-Pecker '11]:

Every knot has a projection that is a Chebyshev plane curve.

II. Alexander polynomial via grid graphs

The "dimer" graph [C.-Dasbach-Russell '14] for a billiard table diagram is the popular grid graph from graph theory.

Dimer or perfect matching models on these grid graphs also appear in statistical mechanics.

The Alexander polynomial can be swiftly computed from this [C.-Dasbach-Russell '14].

II. Jones polynomials of 2- and 3-bridge knots

Consider $T(a, b)$ with $a=3$ or $a=5$ and with b coprime.
Order the N crossings lexicographically.
Obtain a knot from a string of $\{+,-\}$ of length N.

Goal [C. '14]:

To compute the Jones polynomials directly from the string.
Want a notation that is sensitive to whether a crossing is \pm.

Let f_{b} be the Kauffman bracket polynomial $\langle T(3, b)\rangle$
We compute writhe at the end.

II. Jones polynomials of 2- knots

Apply the unoriented Skein relation

$$
\langle L\rangle=A\left\langle L_{0}\right\rangle+A^{-1}\left\langle L_{\infty}\right\rangle
$$

Notation:

To each crossing assign some monomial:
If the \pm crossing is smoothed vertically, use $A^{ \pm}$.
If the \pm crossing is smoothed horizontally, use A^{\mp}.
If the \pm crossing is resolved by Reidemeister I, use $f_{2}^{ \pm}=-A^{\mp 3}$

II. Jones polynomials of 2-bridge knots / Main Theorem

Let $C=\left[A^{ \pm}, A^{ \pm}\right]+\left[f_{2}^{\mp}, A^{\mp}\right]$ and substitute C from the left.

Theorem [C.]:

The Kauffman bracket polynomials f_{b} of $T(3, b) \supseteq\{2$-bridge knots \} obey the following recursion rules:

If a summand in f_{b-1} ends in \qquad then it is a summand in f_{b} : $\left(\ldots, A^{ \pm}\right)$with a C replacing the $A^{ \pm}$ (..., $\left.\left[\begin{array}{l}\mp \\ 2\end{array}, A^{\mp}\right]\right) \quad$ ending with $A^{ \pm}$ (\ldots, C) with $\left[C, A^{ \pm}\right]+\left[A^{ \pm}, f_{2}^{\mp}, A^{\mp}\right]$ replacing the C.

II. Jones polynomials of 2-bridge knots / Proof Idea

$\left(\ldots, A^{ \pm}\right)$

$\left(\ldots, f_{2}^{\mp}, A^{\mp}\right)$
where $f_{2}^{ \pm}=-A^{\mp 3}$ is the Kauffman bracket polynomial of $T(3,2)$

클

II．Jones polynomials of 2－bridge knots／Intuition

Look at the＂dimer graph＂again to see the $2 \times b$ grid graph ．

The smoothings relate to the $2 \times(b-1)$ and $2 \times(b-2)$ grid graphs．

클

II. Jones polynomials of 2-bridge knots / \# of terms

Proposition [C.]:

The \# of terms in the expansion of f_{b} is (a sequence that is an offset by four of)

$$
\begin{gathered}
p(0)=1, \\
p(1)=a(2)=0, \\
p(n)=p(n-2)+p(n-3),
\end{gathered}
$$

the Padovan sequence,
[A000931] in The On-Line Encyclopedia of Integer Sequences.

III. Random Chebyshev billiard table knots $T(3, b)$

We now apply the probabilistic method to this model.
Take $T(3, b)$ for fixed b with a random string in $\{+,-\}^{b-1}$.
Compare among all 2-bridge knots together with the unknot.

Goal:

Prove robustness of this model; generalize for larger bridge numbers.

III. Random Chebyshev billiard table knots $T(3, b)$

Main Theorem [C.-Krishnan '15]:

The probability of a given knot appearing in $T(3, n+1)$ is

$$
\frac{1}{2^{n}}\left(X_{n+3}+\sum_{i=0}^{n-6}\left[\binom{n-5}{i+1}+4\binom{n-5}{i}\right] X_{n-3 i}+4 X_{-2 n+15}\right)
$$

For a knot K with reduced lengths $\ell_{0} \equiv 0$ and $\ell_{1} \equiv 1 \bmod 3$ and $\#(\ell)$ the number of ways to write K in that length,

$$
X_{n}=4(m-1) \#(\ell) \text { for } n=3 m+\ell \text { and } m \geq 2
$$

For $n \geq 0$ and $N=\left\lfloor\frac{n-\ell}{2}\right\rfloor+\ell+6$,

$$
X_{-n}= \begin{cases}-\sum_{k=0}^{N-5}\binom{N-5}{k-1} X^{(N-3 k)} & \text { for } \frac{n-\ell_{1}}{3} \text { even, } \frac{n-\ell_{2}}{3} \text { odd } \\ \sum_{k=0}^{N-4}\left[2\binom{(-4}{k}-\binom{N-3}{k}\right] \mathcal{X}^{(N-3 k)} & \text { for } \frac{n-\ell_{1}}{3} \text { odd, } \frac{n-\ell_{2}}{3} \text { even. }\end{cases}
$$

III. Random Chebyshev billiard table knots $T(3, b)$

Figure eight

III. Random Chebyshev billiard table knots $T(3, b)$

III. Random Chebyshev billiard table knots $T(3, b)$

Conjecture [C.-Krishnan '15]:

The probability of a given knot appearing in $T(3, n+1)$ is 0 for large enough n.

Question:

At what rate does this happen?

III. Main proof technique / Continued fractions

The class of 2-bridge knots can be completely described using Conway notation $\left[a,-b, \ldots,(-1)^{k-1} c,(-1)^{k} d\right]$.

Because one can associate to this sequence a continued fraction, they are also called rational knots.

$$
\frac{\alpha}{\beta}=a+\frac{1}{-b+\frac{1}{\ldots+\frac{1}{-c+\frac{1}{d}}}}
$$

III. Main proof technique / Continued fractions

Theorem [Schubert '56]:

The rational knots $\frac{\alpha}{\beta}$ and $\frac{\alpha^{\prime}}{\beta^{\prime}}$ are isotopic \Leftrightarrow

$$
\alpha^{\prime}=\alpha \text { and } \beta^{\prime}=\beta^{ \pm 1} \bmod \alpha .
$$

'Palindrome' Theorem [see Kauffman-Lambropoulou]:
$\frac{\alpha}{\beta}=\left[a_{1}, \ldots, a_{n}\right]$ and $\frac{\alpha^{\prime}}{\beta^{\prime}}=\left[a_{n}, \ldots, a_{1}\right]$ are isotopic \Leftrightarrow

$$
\alpha^{\prime}=\alpha \text { and } \beta \beta^{\prime} \equiv(-1)^{n+1} \bmod \alpha .
$$

III. Main proof idea / Reduction moves

An Internal Reduction Move Int can be performed when
+++ or --- occurs in the string.

An External Reduction Move Ext can be performed when ++ or -- occurs at the end of the string.

III. Combining reduction moves with continued fractions

Definition [Koseleff-Pecker]:

A continued fraction $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ is 1 -regular if $a_{i} \neq 0$,
(I). if $a_{i} a_{i+1}<0$, then $a_{i+1} a_{i+2}>0$ for $i=1, \ldots, m-2$,
(E). and $a_{m-1} a_{m}>0$.

Remark:

Property (I) is equivalent to NO internal reduction move, and
(E) is equivalent to $N O$ external reduction move at the right.

III. Combining reduction moves with continued fractions

Theorem [Koseleff-Pecker '11]:

ヨ! 1-regular continued fraction for $\frac{\alpha}{\beta}$ such that $a_{i}= \pm 1$.
Furthermore,

$$
\frac{\alpha}{\beta}>1 \Leftrightarrow a_{2}=1
$$

Remark:

This is equivalent to $N O$ external reduction move at the right.

III. Reduced lengths for 2-bridge knots

Definition [modified from Koseleff-Pecker '11]:

The (reduced) length $\ell\left(\frac{\alpha}{\beta}\right)$ of the continued fraction $1<\frac{\alpha}{\beta}=\left[a_{1}, \ldots, a_{n}\right]$ with $a_{i}= \pm 1$ is n.

Proposition [Koseleff-Pecker '11]:

Let $\alpha>\beta>0$ and consider $\frac{\alpha}{\beta}=P G P(\infty)$ and $N=\operatorname{cn}\left(\frac{\alpha}{\beta}\right)$.
Let β^{\prime} be such that $0<\beta^{\prime}<\alpha$ and $\beta \beta^{\prime} \equiv(-1)^{N-1} \bmod \alpha$.
Then $\ell\left(\frac{\alpha}{\alpha-\beta}\right)+\ell\left(\frac{\alpha}{\beta}\right)=3 N-2$ and $\ell\left(\frac{\alpha}{\beta^{\prime}}\right)=\ell\left(\frac{\alpha}{\beta}\right)$.

Proposition [Koseleff-Pecker '11]:

Let K be a two-bridge knot with crossing number N. There exists $\frac{\alpha}{\beta}>1$ such that K can be represented by $\left(\pm \frac{\alpha}{\beta}\right)$ and $\ell\left(\frac{\alpha}{\beta}\right)<\frac{3}{2} N-1$.

III. All possible fractions for K

The mirror of $\frac{\alpha}{\beta}=\left[a_{1}, \ldots, a_{n}\right]$ is $-\frac{\alpha}{\beta}=\left[-a_{1}, \ldots,-a_{n}\right]$
Note that with mirrors and $a_{2} \geq 1$, we have four options for β^{\prime} :

$$
\beta,-\beta, \frac{1}{\beta}, \text { and }-\frac{1}{\beta} .
$$

Thus there are only four ways to write a given 2-bridge knot as $T(3, n+1)$ with no reduction moves.

Conclusion

Thanks to:

to Pierre-Vincent Koseleff as well as to

Supported in part by the funding from the European Research Council under the European Union's Seventh Framework Programme, Grant FP7-ICT-318493-STREP.

