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A knot K is S1 embedded in S3. We orient the knot.

A knot diagram D is the projection of the knot onto R
2 with

under- and over-crossing information.

Theorem (Reidemeister 1926):

Two diagrams represent the same knot⇔

∃ a sequence of Reidemeister moves taking one to the other.

Moshe Cohen A dimer model for the Jones polynomial of pretzel knots



Graph and knot polynomials
Constructing the activity matrix

Examples, more results, and questions

RMI: ↔ ↔

RMII: ↔ ↔

RMIII: ↔

A knot invariant is an evaluation on a knot diagram that is
constant under each of the three Reidemeister moves.
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Walk-through

Motivation:

Jones polynomial of K ↔ Tutte polynomial of Tait graph G.

Activity gives spanning tree model for Tutte polynomial.

Champanerkar-Kofman: spanning tree model for K̃h.

Kronheimer-Mrowka: K̃h detects the unknot.

Goals:

Spanning trees of G←→ perfect matchings of Γ.

List of perfect matchings as a matrix determinant.

Jaeger-Vertigan-Welsh: Jones polynomial is #P-hard.

...but pretzel knots work!
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or −1.

Checkerboard color the regions of a knot diagram D.

Definition:

The signed Tait graph G associated with D has

V (G) = {colored regions} and E(G) = {crossings of D}.

positive negative

Note that the dual G∗ comes from the uncolored regions.
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Graphs from knots: the overlaid Tait graph Γ̂

Definition:

The overlaid Tait graph Γ̂ associated with D is bipartite with

V (Γ̂) = [E(G) ∩ E(G∗)] ⊔ [V (G) ⊔ V (G∗)] and

E(Γ̂) the half-edges of G and G∗.

Each face in the overlaid Tait graph Γ̂ is a square.
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The balanced overlaid Tait graph Γ
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Graphs from knots: the balanced overlaid Tait graph Γ

Definition:

The balanced overlaid Tait graph Γ associated with D is

obtained from Γ̂ by removing two vertices from the larger set

that lie on the same face:

∗

∗

“Balanced” means the two vertex sets are the same size.

Moshe Cohen A dimer model for the Jones polynomial of pretzel knots



Graph and knot polynomials
Constructing the activity matrix

Examples, more results, and questions

The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Graphs from knots: the signed Tait graph G

The oriented knot 819,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Graphs from knots: the signed Tait graph G

a checkerboard coloring,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Graphs from knots: the signed Tait graph G

the corresponding signed Tait graph G,

Moshe Cohen A dimer model for the Jones polynomial of pretzel knots



Graph and knot polynomials
Constructing the activity matrix

Examples, more results, and questions

The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Graphs from knots: the signed Tait graph G

the dual signed Tait graph G∗,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Graphs from knots: the balanced overlaid Tait graph Γ

the overlaid Tait graph Γ̂ (all faces are square),
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Graphs from knots: the balanced overlaid Tait graph Γ

∗

∗

and the balanced overlaid Tait graph Γ.
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Tutte’s activity
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Tutte’s activity words: Definition

Definition (Tutte’s Activity words):

For spanning tree S of signed graph G with ordered edges,
assign an activity letter to each edge:

+ live dead − live dead

internal L D internal L D

external ℓ d external ℓ d

Activity (“live” or “dead”) is determined by the ordering:
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The balanced overlaid Tait graph Γ

Tutte’s activity
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Tutte’s activity words: Definition

For external edge e /∈ S, there is a unique cycle in S ∪ {e}.

e /∈ S is live if it is the lowest-ordered edge in the cycle.

For internal edge e ∈ S, the graph S\{e} is disconnected.

e ∈ S is live if it is the lowest-ordered edge that reconnects.

Let a(e,S) be the activity letter for the edge e and the tree S,

and let a(S) be the activity word associated to the tree S.
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Tutte’s activity words: Example

1 2 3

For the (all positive) graph G
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Tutte’s activity words: Example

L d

and the spanning tree S1,
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Tutte’s activity
Main results

Tutte’s activity words: Example

L d

the first edge is L,
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Tutte’s activity
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Tutte’s activity words: Example

L d d

the second edge is d ,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

L d d

and the third edge is also d ,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

L d d

giving the activity word a(S1) = (Ldd).
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

L d

For the spanning tree S2,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

ℓ d

the first edge is ℓ,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

ℓ D d

the second edge is D,
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Tutte’s activity words: Example

ℓ D d

and the third edge is d ,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

ℓ D d

giving the activity word a(S2) = (ℓDd).
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

L d

And for the spanning tree S3,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

ℓ d

the first edge is ℓ,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

ℓ ℓ d

the second edge is ℓ,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

ℓ ℓ D

and the third edge is D,
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

ℓ ℓ D

giving the activity word a(S3) = (ℓℓD).
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The balanced overlaid Tait graph Γ

Tutte’s activity
Main results

Tutte’s activity words: Example

L d d
ℓ D d
ℓ ℓ D

Thus the activity words are (Ldd), (ℓDd), and (ℓℓD).
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The balanced overlaid Tait graph Γ
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Tutte polynomial T (G; x , y)

For (unsigned) graph G and edge e,

let G\e be the deletion of e and G/e the contraction.

Definition (Tutte):
The (unsigned) Tutte polynomial T (G; x , y) =
{

T (G\e; x , y) + T (G/e; x , y) if e is neither a bridge nor a loop,

x# bridges y# loops if all edges are bridges and loops.

Theorem (Tutte):

T (G; x , y) =
∑

S

x#Ly#ℓ =
∑

S

∏

e∈E(G)

a(e,S)|T
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The balanced overlaid Tait graph Γ
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Main results

Tutte polynomial T (G; x , y)

a(e,S) L D ℓ d L D ℓ d

a(e,S)|T x 1 y 1 −− −− −− −−

The activity evaluations for the Tutte polynomial T (G; x , y)
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Signed Tutte polynomial Q(G;A,B, δ)

Definition (Kauffman):
The signed Tutte polynomial Q(G;A,B, δ) =





AQ(G\e;A,B, δ) + BQ(G/e;A,B, δ) non-bridge/loop e,

BQ(G\e;A,B, δ) + AQ(G/e;A,B, δ) non-bridge/loop e,

x# bridges +# loops y# loops +# bridges all bridges/loops,

setting x = A + Bδ and y = Aδ + B.

Theorem (Kauffman):

Q(G;A,B, δ) =
∑

S

∏

e∈E(G)

a(e,S)|Q
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Main results

Signed Tutte polynomial Q(G;A,B, δ)

a(e,S) L D ℓ d L D ℓ d

a(e,S)|Q x A y B y B x A

The activity evaluations for the signed Tutte polynomial
Q(G;A,B, δ) with x = A + Bδ and y = Aδ + B

Moshe Cohen A dimer model for the Jones polynomial of pretzel knots



Graph and knot polynomials
Constructing the activity matrix

Examples, more results, and questions
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Kauffman bracket polynomial 〈K 〉

L0 L∞

Definition (Kauffman):
The Kauffman bracket polynomial 〈L〉 of link L satisfies

1 Smoothing relation: 〈L〉 = A〈L0〉+ A−1〈L∞〉
2 Stabilization: 〈U ⊔ L〉 = (−A2 − A−2)〈L〉
3 Normalization: 〈U〉 = 1.

For knot K with signed Tait graph G,

Theorem (Thistlethwaite):

〈K 〉 =
∑

S

∏

e∈E(G)

a(e,S)|V
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Kauffman bracket polynomial 〈K 〉

a(e,S) L D ℓ d L D ℓ d

a(e,S)|V −A−3 A −A3 A−1 −A3 A−1 −A−3 A

The activity evaluations for the Kauffman bracket 〈K 〉
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Jones polynomial VK (t)

The writhe w(D) of an oriented diagram is the sum:

+1 −1

Definition (Jones):
The Jones polynomial VL(t) of link L satisfies, for A = t−1/4,

VL(t) = (−A−3)w(D)〈L〉.

For a knot K with signed Tait graph G,

Theorem (Thistlethwaite):

VK (t) = (−A−3)w(D)
∑

S

∏

e∈E(G)

a(e,S)|V
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The balanced overlaid Tait graph Γ
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Dimer model

A dimer in a (bipartite) graph is just an edge.

A perfect matching µ is a collection of non-incident dimers
that covers the graph.
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The balanced overlaid Tait graph Γ

Tutte’s activity
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The correspondence between G and Γ

signed Tait graph G balanced overlaid Tait graph Γ

edge e ∈ E(G) edge ε ∈ E(Γ)

squared incidence matrix bipartite adjacency submatrix

rooted spanning tree S in G perfect matching µ in Γ

activity a(e,S) activity weighting α(ε)
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P = P(n1, n2, . . . , nk)-pretzel knot

n1

1

n1 + 1

n1 + n2

n1 + n2 + . . .+ 1

n1 + n2 + . . .+ nk

∗

∗

The (n1, n2, . . . , nk )-pretzel knot P
with an ordering on the crossings.
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Main results: activity words

Main Theorem:

Summing over all perfect matchings µ in Γ

and taking the product over all edges ε ∈ µ,

∑

µ

∏

ε∈µ

α(ε) =
∑

S

a(S)

gives the complete list of activity words a(S) associated with

spanning trees S of G associated with the diagram of P.
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Main results: Jones polynomial

Main Corollary:

Summing over all perfect matchings µ in Γ

and taking the product over all edges ε ∈ µ,

∑

µ

∏

ε∈µ

w(ε)α(ε)|V = VP(t)

gives the Jones polynomial VP(t) of P.
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Tutte’s activity
Main results

Main results: matrix determinant

Computational Corollary:

Let εij be the edge ε ∈ E(Γ) btwn the i-th vertex coming from

the crossings and the j-th vertex coming from the regions.

Let A = (κ(εij)w(εij)α(εij)|V ) be the activity weighting

on the bipartite adjacency submatrix associated with P. Then

det(A) = VP(t)

gives the Jones polynomial VP(t) of P up to sign.
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Tutte’s activity
Main results

A note on pretzel knots

The results above hold for pretzel knots ∀k ∈ N, |ni | ∈ N.

One cannot hope to achieve this result for a general knot K .

Theorem (Jaeger-Vertigan-Welsh):

Determining the Jones polynomial is #P-hard.
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Matrices from graphs: the incidence matrix

The incidence matrix has rows labelled by edges
and columns labelled by vertices.

mij = 0 if the i-th edge is not incident with the j-th vertex.

This |E | × |V | matrix is in general not square.

The squared incidence matrix is the incidence matrix of the
graph together with the incidence matrix for the dual graph
with a column of each deleted.

This |E | × [(|V | − 1) + (|F | − 1)] matrix is square.
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Matrices from graphs: the adjacency matrix

The adjacency matrix rows and columns labelled by vertices.

mij = 0 if the i-th vertex is not adjacent to the j-th vertex.

For a bipartite graph, present this square matrix in block form
(

0 M
MT 0

)

The bipartite adjacency submatrix is the block M.

Proposition:

The squared incidence matrix of the Tait graph G is the bipartite
adjacency submatrix of the balanced overlaid Tait graph Γ.
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Matrices from graphs: determinant and permanent

Recall the determinant of a matrix M = (mij)

det(M) =
∑

σ∈S

∏

i

(−1)sign(σ)miσ(i)

The permanent or unsigned determinant is

perm(M) =
∑

σ∈S

∏

i

miσ(i)
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Matrices from graphs: determinant and permanent

Proposition:

The terms in the permanent expansion of a bipartite adjacency
submatrix associated with a(n unsigned) balanced bipartite
graph give the complete list of perfect matchings of the graph.

Proof:

Each term in the permanent expansion is a permutation σ
matching each vertex i in the first vertex set
to a vertex σ(i) in the second vertex set. �
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Kauffman’s trick κ(ε): signing the entries

This will be used to sign the corresponding entries in the matrix.

A Kasteleyn weighting of a plane bipartite graph is a signing
of the edges such that # negatives around a particular face is

odd if the face has length 0 mod 4 or

even if the face has length 2 mod 4.

Lemma:

Suppose G has a Kasteleyn weighting. Then so does G\e.
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Kauffman’s trick κ(ε): signing the entries

Proof:

Let e be incident with with two faces of length f1 and f2.
Delete e to replace these with a face of length f1 + f2 − 2.

f1 # negs f2 # negs f1 + f2 − 2 mod 4 # negs
0 odd 0 odd 2 even
0 odd 2 even 0 odd
2 even 0 odd 0 odd
2 even 2 even 2 even

Then # negs changes by 0 or 2 (an even number)
compared with the sum of # negs in f1 and f2. �
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Kauffman’s trick κ(ε): signing the entries

Kauffman’s trick κ(ε) to distribute signs to the edges of the
balanced overlaid Tait graph Γ coming from a knot diagram:

1

−1

1

1
1

−1
1

1

1

−1

1

1

Proposition:

Kauffman’s trick κ(ε) provides a Kasteleyn weighting.
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Kauffman’s trick κ(ε): signing the entries

Proof:

Each face in the overlaid Tait graph Γ̂ is a square. The balanced
overlaid Tait graph Γ is obtained by edge deletions.

The assigning of a negative edge affects exactly one
of the NW and SW sides of the square. �
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Examples, more results, and questions

The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Kauffman’s trick κ(ε): signing the entries

Proposition:

The determinant expansion of a bipartite adjacency submatrix
associated with a Kasteleyn-weighted balanced bipartite graph
gives the complete list of perfect matchings up to sign.

Proof:

Two permutations differ by a transposition←→
∃ four non-zero terms in a rectangle in the matrix←→
∃ a square face in the graph.
∃! negative sign in each square, so these have
opposite signs in both the matrix and the perfect matching. �
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Proposition:

Given a knot diagram, there is a bijection between
perfect matchings of the balanced overlaid Tait graph Γ
and rooted spanning trees of the Tait graph G.

Proof:

{perfect matchings of Γ} ∼=
{permanent expansion of the bipartite adjacency submatrix} ∼=
{permanent expansion of the squared incidence matrix} ∼=
{partition of edges T ⊂ G and T c ⊂ G∗}
T spans; if ∃ cycle C, then ∗ must be on one side of C.
T c spans; ∃ cycle in the dual on the same side of C.
Repeat this process, yielding an infinite graph. →← �
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
Writhe weighting w(ε) and activity weighting α(ε)

Correspondence between edges ε of the overlaid Tait graph Γ̂
and directed edges e of the (directed) Tait graph G.
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The bipartite adjacency submatrix
Kauffman’s trick κ(ε) giving a Kasteleyn weighting
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Writhe weighting w(ε): edges ε ∈ E(Γ)

The writhe weighting w(ε) on ε ∈ E(Γ) is (−A)−3 or (−A)3:

(−A)3(−A)−3
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Writhe weighting w(ε): bipartite adjacency submatrix

Let εij be the edge ε ∈ E(Γ) btwn the i-th vertex coming from

the crossings and the j-th vertex coming from the regions.

The writhe weighting w(εij) is determined by

the sign of the i-th vertex coming from the crossings.

At the level of the bipartite adjacency submatrix, this means

multiplying all entries in each row by (−A)−3 or (−A)3.
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Activity weighting α(ε): edges ε ∈ E(Γ)

The bipartition of the vertices in Γ is really the tripartition

V (Γ) = [E(G) ∩ E(G∗)] ⊔ [V (G)] ⊔ [V (G∗)] = VE ⊔ VV ⊔ VF

Definition

The activity weighting α(ε) on ε = vivj ∈ E(Γ) is given by:

an edge incident with vi ∈ VE is + or − if e ∈ E(G) is + or −;

an edge incident with vj ∈ VV is internal, and

an edge incident with vj ∈ VF is external; and

an edge is live if it connects the lowest-ordered vi ∈ VE

to the vertex vj ∈ VV ⊔ VF and dead otherwise.
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Activity weighting α(ε): bipartite adjacency submatrix

The entries of the bipartite adjacency submatrix associated to
the balanced overlaid Tait graph Γ obey the following rules:

ordered rows associated with VE are all positive or all negative;

columns associated with VV are internal and VF are external;

the first non-zero entry in a column is live, the rest are dead.
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A note on the proof

The proof that the terms in the determinant expansion give the

exact activity words for the pretzel knots comes from

a technical lemma (C.) on the activity of paths.

One difficulty to extending this class is producing

a complete list of activity words for more general knots.
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Example 1: the Jones polynomial for the trefoil

Example 1: the (1, 1, 1)-pretzel knot

1 2 3
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Example 1: the Jones polynomial for the trefoil

Tait graph G

1 2 3

∗
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Example 1: the Jones polynomial for the trefoil

balanced overlaid Tait graph Γ

∗

∗
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Example 1: the Jones polynomial for the trefoil

The spanning trees give activity words (Ldd), (ℓDd), and (ℓℓD):




L ℓ

D −d ℓ

D −d




With writhe (−A−3)−3, the determinant is A4 + A12 − A16 =
t−1 + t−3 − t−4, the Jones polynomial of the trefoil.
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Example 2: the Jones polynomial for 819

Example 2: the (−2, 3, 3)-pretzel knot

2

1

3

4

5

6

7

8
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Example 2: the Jones polynomial for 819

Tait graph G

2

1

3

4

5

6

7

8
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Example 2: the Jones polynomial for 819

balanced overlaid Tait graph Γ

∗

∗
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Example 2: the Jones polynomial for 819




L ℓ

D L −d
−L D d ℓ
D −L d d

D d d
L −D d
−D L d

−D d




With writhe (−A−3)8, the determinant is −A−32 + A−20 + A−12

= −t8 + t5 + t3, the Jones polynomial of 819.
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Example 3: the Jones polynomial for the (−2, 3, 7)-pretzel knot




L ℓ

D L −d
−L D d ℓ
D −L d d

D d d
L −D d
−D L d

−D L d
−D L d

−D L d
−D L d

−D d




With writhe (−A−3)12, the determinant is
−A−40 + A−36 − A−32 + A−16 + A−8 = −t10 + t9 − t8 + t2.
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Leaving the class of pretzel knots

Property: (Subdivision/Doubling)

Let en ∈ E(G) be incident with the omitted vertex and face.

Then if the activity weighting on Γ provides a dimer model for G,

this can be extended to one for G ∪ {en+1}

that subdivides or doubles en.

∗
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Leaving the class of pretzel knots

Proof:

Row en in squared incidence matrix only has D and d .

Subdivide to get a new row en+1 and a new vertex column.

Entries in this column are 0 except for L and D.

Determinant expansion terms give DD and dD, preserving

the first n pivots, or Ld , preserving the first n − 1 pivots.

These cases are exactly the possibilities for activity words.

The dual case of doubling works similarly. �
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Another corollary to the Main Theorem

Reduced Khovanov homology chain complex C̃Kh:

a(e,S) L D ℓ d L D ℓ d

a(e,S)|K uv v u−1 1 u−1 1 u 1

Moshe Cohen A dimer model for the Jones polynomial of pretzel knots



Graph and knot polynomials
Constructing the activity matrix

Examples, more results, and questions

The trefoil, 819, and the (−2, 3, 7)-pretzel knot
Extending this class; applications to Khovanov homology
Future work

Another corollary to the Main Theorem

Corollary:

Summing over all perfect matchings µ in Γ

and taking the product over all edges ε ∈ µ,

∑

µ

∏

ε∈µ

α(ε)|K

gives the two-variable polynomial C̃KhP(q, t) for

the reduced Khovanov chain complex of P up to sign.
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Questions

What can these easy computations teach us about

the Jones polynomial of the class of pretzel knots?

The activity weighting can be extended

to a larger class of knots, but how far can it go?

The first-order differential of reduced Khovanov homology

can be found in the activity matrix, but the higher-order ones?
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