A dimer model for the Jones polynomial of pretzel knots http://arxiv.org/abs/1011.3661

Moshe Cohen

Department of Mathematics and Computer Science,
Bar-Ilan University
CUNY Geometry and Topology Seminar, February 8th, 2011

A knot K is S^{1} embedded in S^{3}. We orient the knot.
A knot diagram D is the projection of the knot onto \mathbb{R}^{2} with under- and over-crossing information.

Theorem (Reidemeister 1926):

Two diagrams represent the same knot \Leftrightarrow
\exists a sequence of Reidemeister moves taking one to the other.

RMI:

RMII:

RMIII:

A knot invariant is an evaluation on a knot diagram that is constant under each of the three Reidemeister moves.

Walk-through

Motivation:

- Jones polynomial of $K \leftrightarrow$ Tutte polynomial of Tait graph G.
- Activity gives spanning tree model for Tutte polynomial.
- Champanerkar-Kofman: spanning tree model for $\widetilde{K h}$.
- Kronheimer-Mrowka: $\widetilde{K h}$ detects the unknot.

Goals:

- Spanning trees of $G \longleftrightarrow$ perfect matchings of Γ.
- List of perfect matchings as a matrix determinant.
- Jaeger-Vertigan-Welsh: Jones polynomial is \#P-hard.
- ...but pretzel knots work!

$\left(\begin{array}{lll} L & & \\ D & \ddots & \\ & \ddots & L \\ & & D \end{array}\right.$				L	$\begin{gathered} \ell \\ d \\ \vdots \\ d \end{gathered}$
	$\begin{array}{lll} \hline L & & \\ D & \ddots & \\ & \ddots & L \\ & & D \end{array}$			D	$\begin{array}{cc} d & \ell \\ d & d \\ \vdots & \vdots \\ d & d \end{array}$
		\ddots		:	$\vdots \quad \ddots \quad \vdots$
($\begin{array}{lll} \hline L & & \\ D & \ddots & \\ & \ddots & L \\ & & D \end{array}$	D	d d \vdots d

The balanced overlaid Tait graph Γ

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or -1 .
Checkerboard color the regions of a knot diagram D.

Definition:

The signed Tait graph G associated with D has
$V(G)=\{$ colored regions $\}$ and $E(G)=\{$ crossings of $D\}$.
positive

negative

Note that the dual G^{*} comes from the uncolored regions.

The balanced overlaid Tait graph Γ

Graphs from knots: the overlaid Tait graph $\widehat{\Gamma}$

Definition:

The overlaid Tait graph $\hat{\Gamma}$ associated with D is bipartite with $V(\widehat{\Gamma})=\left[E(G) \cap E\left(G^{*}\right)\right] \sqcup\left[V(G) \sqcup V\left(G^{*}\right)\right]$ and $E(\widehat{\Gamma})$ the half-edges of G and G^{*}.

Each face in the overlaid Tait graph $\widehat{\Gamma}$ is a square.

Graphs from knots: the balanced overlaid Tait graph Γ

Definition:

The balanced overlaid Tait graph \ulcorner associated with D is obtained from $\hat{\Gamma}$ by removing two vertices from the larger set that lie on the same face:

"Balanced" means the two vertex sets are the same size.

The balanced overlaid Tait graph Γ Tutte's activity

Graphs from knots: the signed Tait graph G

The oriented knot 8_{19},

The balanced overlaid Tait graph Γ Tutte's activity

Graphs from knots: the signed Tait graph G

a checkerboard coloring,

The balanced overlaid Tait graph Γ Tutte's activity

Graphs from knots: the signed Tait graph G

the corresponding signed Tait graph G,

Graph and knot polynomials
Constructing the activity matrix Examples, more results, and questions

The balanced overlaid Tait graph Γ Tutte's activity Main results

Graphs from knots: the signed Tait graph G

the dual signed Tait graph G^{*},

Graphs from knots: the balanced overlaid Tait graph Γ

the overlaid Tait graph $\widehat{\Gamma}$ (all faces are square),

The balanced overlaid Tait graph Γ

Graphs from knots: the balanced overlaid Tait graph Γ

and the balanced overlaid Tait graph Γ.

Tutte's activity words: Definition

Definition (Tutte's Activity words):

For spanning tree S of signed graph G with ordered edges, assign an activity letter to each edge:

+	live	dead	-	live	dead
internal	L	D	internal	\bar{L}	\bar{D}
external	ℓ	d	external	$\bar{\ell}$	\bar{d}

Activity ("live" or "dead") is determined by the ordering:

Tutte's activity words: Definition

For external edge $e \notin S$, there is a unique cycle in $S \cup\{e\}$. $e \notin S$ is live if it is the lowest-ordered edge in the cycle.

For internal edge $e \in S$, the graph $S \backslash\{e\}$ is disconnected. $e \in S$ is live if it is the lowest-ordered edge that reconnects.

Let $a(e, S)$ be the activity letter for the edge e and the tree S, and let $a(S)$ be the activity word associated to the tree S.

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

For the (all positive) graph G

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

and the spanning tree S_{1},

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

the first edge is L,

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

the second edge is d,

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

and the third edge is also d,

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ

Tutte's activity words: Example

giving the activity word $a\left(S_{1}\right)=(L d d)$.

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

For the spanning tree S_{2},

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

the first edge is ℓ,

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

the second edge is D,

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

and the third edge is d,

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

giving the activity word $a\left(S_{2}\right)=(\ell D d)$.

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

And for the spanning tree S_{3},

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

the first edge is ℓ,

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

the second edge is ℓ,

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ
Tutte's activity
Main results

Tutte's activity words: Example

Graph and knot polynomials

The balanced overlaid Tait graph Γ

Tutte's activity words: Example

giving the activity word $a\left(S_{3}\right)=(\ell \ell D)$.

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The balanced overlaid Tait graph Γ Tutte's activity Main results

Tutte's activity words: Example

Thus the activity words are ($L d d$), ($\ell D d$), and ($\ell \ell D)$.

Tutte polynomial $T(G ; x, y)$

For (unsigned) graph G and edge e,
let $G \backslash e$ be the deletion of e and G / e the contraction.
Definition (Tutte):
The (unsigned) Tutte polynomial $T(G ; x, y)=$
$\{T(G \backslash e ; x, y)+T(G / e ; x, y)$ if e is neither a bridge nor a loop,
$\left\{x^{\#}\right.$ bridges y \# loops \quad if all edges are bridges and loops.
Theorem (Tutte):

$$
T(G ; x, y)=\sum_{S} x^{\# L} y^{\# \ell}=\left.\sum_{S} \prod_{e \in E(G)} a(e, S)\right|_{T}
$$

Tutte polynomial $T(G ; x, y)$

$a(e, S)$	L	D	ℓ	d	\bar{L}	\bar{D}	$\bar{\ell}$	\bar{d}
$\left.a(e, S)\right\|_{T}$	x	1	y	1	--	--	--	--

The activity evaluations for the Tutte polynomial $T(G ; x, y)$

Signed Tutte polynomial $Q(G ; A, B, \delta)$

Definition (Kauffman):
The signed Tutte polynomial $Q(G ; A, B, \delta)=$

$$
\begin{cases}A Q(G \backslash \bar{e} ; A, B, \delta)+B Q(G / \bar{e} ; A, B, \delta) & \text { non-bridge/loop } \bar{e}, \\ B Q(G \backslash e ; A, B, \delta)+A Q(G / e ; A, B, \delta) & \text { non-bridge/loop } e \\ x^{\# \text { bridges }+\# \overline{\text { loops }} y \# \text { loops }+\# \text { bridges }} & \text { all bridges/loops }\end{cases}
$$

setting $x=A+B \delta$ and $y=A \delta+B$.
Theorem (Kauffman):

$$
Q(G ; A, B, \delta)=\left.\sum_{S} \prod_{e \in E(G)} a(e, S)\right|_{Q}
$$

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

Signed Tutte polynomial $Q(G ; A, B, \delta)$

$a(e, S)$	L	D	ℓ	d	\bar{L}	\bar{D}	$\bar{\ell}$	\bar{d}
$\left.a(e, S)\right\|_{Q}$	x	A	y	B	y	B	x	A

The activity evaluations for the signed Tutte polynomial $Q(G ; A, B, \delta)$ with $x=A+B \delta$ and $y=A \delta+B$

Kauffman bracket polynomial $\langle K\rangle$

Definition (Kauffman):

The Kauffman bracket polynomial $\langle L\rangle$ of link L satisfies
(1) Smoothing relation: $\langle L\rangle=A\left\langle L_{0}\right\rangle+A^{-1}\left\langle L_{\infty}\right\rangle$
(2) Stabilization: $\langle U \sqcup L\rangle=\left(-A^{2}-A^{-2}\right)\langle L\rangle$
(3) Normalization: $\langle U\rangle=1$.

For knot K with signed Tait graph G,
Theorem (Thistlethwaite):

$$
\langle K\rangle=\left.\sum_{S} \prod_{e \in E(G)} a(e, S)\right|_{v}
$$

Kauffman bracket polynomial $\langle K\rangle$

$a(e, S)$	L	D	ℓ	d	\bar{L}	\bar{D}	$\bar{\ell}$	\bar{d}
$a(e, S) \mid v$	$-A^{-3}$	A	$-A^{3}$	A^{-1}	$-A^{3}$	A^{-1}	$-A^{-3}$	A

The activity evaluations for the Kauffman bracket $\langle K\rangle$

Jones polynomial $V_{K}(t)$

The writhe $w(D)$ of an oriented diagram is the sum:

Definition (Jones):
The Jones polynomial $V_{L}(t)$ of link L satisfies, for $A=t^{-1 / 4}$,

$$
V_{L}(t)=\left(-A^{-3}\right)^{w(D)}\langle L\rangle .
$$

For a knot K with signed Tait graph G,
Theorem (Thistlethwaite):

$$
V_{K}(t)=\left(-A^{-3}\right)^{w(D)} \sum_{S} \prod_{e \in E(G)} a(e, S) \mid v
$$

Dimer model

A dimer in a (bipartite) graph is just an edge.

A perfect matching μ is a collection of non-incident dimers that covers the graph.

The correspondence between G and Γ

signed Tait graph G
edge $e \in E(G)$
squared incidence matrix
rooted spanning tree S in G
activity $a(e, S)$
balanced overlaid Tait graph 「

$$
\text { edge } \varepsilon \in E(\Gamma)
$$

bipartite adjacency submatrix
perfect matching μ in Γ
activity weighting $\alpha(\varepsilon)$

$P=P\left(n_{1}, n_{2}, \ldots, n_{k}\right)$-pretzel knot

The ($n_{1}, n_{2}, \ldots, n_{k}$)-pretzel knot P with an ordering on the crossings.

Main results: activity words

Main Theorem:

Summing over all perfect matchings μ in Γ and taking the product over all edges $\varepsilon \in \mu$,

$$
\sum_{\mu} \prod_{\varepsilon \in \mu} \alpha(\varepsilon)=\sum_{S} a(S)
$$

gives the complete list of activity words $a(S)$ associated with spanning trees S of G associated with the diagram of P.

Main results: Jones polynomial

Main Corollary:

Summing over all perfect matchings μ in Γ and taking the product over all edges $\varepsilon \in \mu$,

$$
\sum_{\mu} \prod_{\varepsilon \in \mu} w(\varepsilon) \alpha(\varepsilon) \mid v=V_{P}(t)
$$

gives the Jones polynomial $V_{P}(t)$ of P.

Main results: matrix determinant

Computational Corollary:

Let $\varepsilon_{i j}$ be the edge $\varepsilon \in E(\Gamma)$ btwn the i-th vertex coming from the crossings and the j-th vertex coming from the regions.
Let $A=\left(\kappa\left(\varepsilon_{i j}\right) w\left(\varepsilon_{i j}\right) \alpha\left(\varepsilon_{i j}\right) \mid v\right)$ be the activity weighting on the bipartite adjacency submatrix associated with P. Then

$$
\operatorname{det}(A)=V_{P}(t)
$$

gives the Jones polynomial $V_{P}(t)$ of P up to sign.

A note on pretzel knots

The results above hold for pretzel knots $\forall k \in \mathbb{N},\left|n_{i}\right| \in \mathbb{N}$.
One cannot hope to achieve this result for a general knot K.

Theorem (Jaeger-Vertigan-Welsh):

Determining the Jones polynomial is $\# P$-hard.

Matrices from graphs: the incidence matrix

The incidence matrix has rows labelled by edges and columns labelled by vertices.
$m_{i j}=0$ if the i-th edge is not incident with the j-th vertex.
This $|E| \times|V|$ matrix is in general not square.

The squared incidence matrix is the incidence matrix of the graph together with the incidence matrix for the dual graph with a column of each deleted.

This $|E| \times[(|V|-1)+(|F|-1)]$ matrix is square.

Matrices from graphs: the adjacency matrix

The adjacency matrix rows and columns labelled by vertices. $m_{i j}=0$ if the i-th vertex is not adjacent to the j-th vertex.
For a bipartite graph, present this square matrix in block form

$$
\left(\begin{array}{c|c}
0 & M \\
\hline M^{T} & 0
\end{array}\right)
$$

The bipartite adjacency submatrix is the block M.

Proposition:

The squared incidence matrix of the Tait graph G is the bipartite adjacency submatrix of the balanced overlaid Tait graph Γ.

Matrices from graphs: determinant and permanent

Recall the determinant of a matrix $M=\left(m_{i j}\right)$

$$
\operatorname{det}(M)=\sum_{\sigma \in \mathfrak{S}} \prod_{i}(-1)^{\operatorname{sign}(\sigma)} m_{i \sigma(i)}
$$

The permanent or unsigned determinant is

$$
\operatorname{perm}(M)=\sum_{\sigma \in \mathfrak{S}} \prod_{i} m_{i \sigma(i)}
$$

Matrices from graphs: determinant and permanent

Proposition:

The terms in the permanent expansion of a bipartite adjacency submatrix associated with a(n unsigned) balanced bipartite graph give the complete list of perfect matchings of the graph.

Proof:

Each term in the permanent expansion is a permutation σ matching each vertex i in the first vertex set to a vertex $\sigma(i)$ in the second vertex set. \square

Kauffman's trick $\kappa(\varepsilon)$: signing the entries

This will be used to sign the corresponding entries in the matrix.

A Kasteleyn weighting of a plane bipartite graph is a signing of the edges such that \# negatives around a particular face is

- odd if the face has length 0 mod 4 or
- even if the face has length 2 mod 4 .

Lemma:

Suppose G has a Kasteleyn weighting. Then so does $G \backslash e$.

Kauffman's trick $\kappa(\varepsilon)$: signing the entries

Proof:

Let e be incident with with two faces of length f_{1} and f_{2}. Delete e to replace these with a face of length $f_{1}+f_{2}-2$.

f_{1}	$\#$ negs	f_{2}	$\#$ negs	$f_{1}+f_{2}-2$ mod 4	$\#$ negs
0	odd	0	odd	2	even
0	odd	2	even	0	odd
2	even	0	odd	0	odd
2	even	2	even	2	even

Then \# negs changes by 0 or 2 (an even number) compared with the sum of $\#$ negs in f_{1} and f_{2}. \square

Kauffman's trick $\kappa(\varepsilon)$: signing the entries

Kauffman's trick $\kappa(\varepsilon)$ to distribute signs to the edges of the balanced overlaid Tait graph Γ coming from a knot diagram:

Proposition:

Kauffman's trick $\kappa(\varepsilon)$ provides a Kasteleyn weighting.

Kauffman's trick $\kappa(\varepsilon)$: signing the entries

Proof:

Each face in the overlaid Tait graph $\hat{\Gamma}$ is a square. The balanced overlaid Tait graph Γ is obtained by edge deletions.

The assigning of a negative edge affects exactly one of the NW and SW sides of the square. \square

Kauffman's trick $\kappa(\varepsilon)$: signing the entries

Proposition:

The determinant expansion of a bipartite adjacency submatrix associated with a Kasteleyn-weighted balanced bipartite graph gives the complete list of perfect matchings up to sign.

Proof:

Two permutations differ by a transposition \longleftrightarrow
\exists four non-zero terms in a rectangle in the matrix \longleftrightarrow
\exists a square face in the graph.
\exists ! negative sign in each square, so these have opposite signs in both the matrix and the perfect matching. \square

Proposition:

Given a knot diagram, there is a bijection between perfect matchings of the balanced overlaid Tait graph 「 and rooted spanning trees of the Tait graph G.

Proof:

\{perfect matchings of $\Gamma\} \cong$
$\{$ permanent expansion of the bipartite adjacency submatrix $\} \cong$ $\{$ permanent expansion of the squared incidence matrix $\} \cong$ \{partition of edges $T \subset G$ and $T^{c} \subset G^{*}$ \}
T spans; if \exists cycle C, then $*$ must be on one side of C.
T^{c} spans; \exists cycle in the dual on the same side of C.
Repeat this process, yielding an infinite graph. $\rightarrow \leftarrow \square$

Correspondence between edges ε of the overlaid Tait graph $\widehat{\Gamma}$ and directed edges e of the (directed) Tait graph G.

Writhe weighting $w(\varepsilon)$: edges $\varepsilon \in E(\Gamma)$

The writhe weighting $w(\varepsilon)$ on $\varepsilon \in E(\Gamma)$ is $(-A)^{-3}$ or $(-A)^{3}$:

$(-A)^{-3}$

$(-A)^{3}$

Writhe weighting $w(\varepsilon)$: bipartite adjacency submatrix

Let $\varepsilon_{i j}$ be the edge $\varepsilon \in E(\Gamma)$ btwn the i-th vertex coming from the crossings and the j-th vertex coming from the regions.

The writhe weighting $w\left(\varepsilon_{i j}\right)$ is determined by the sign of the i-th vertex coming from the crossings.

At the level of the bipartite adjacency submatrix, this means multiplying all entries in each row by $(-A)^{-3}$ or $(-A)^{3}$.

Activity weighting $\alpha(\varepsilon)$: edges $\varepsilon \in E(\Gamma)$

The bipartition of the vertices in Γ is really the tripartition

$$
V(\Gamma)=\left[E(G) \cap E\left(G^{*}\right)\right] \sqcup[V(G)] \sqcup\left[V\left(G^{*}\right)\right]=V_{E} \sqcup V_{V} \sqcup V_{F}
$$

Definition

The activity weighting $\alpha(\varepsilon)$ on $\varepsilon=v_{i} v_{j} \in E(\Gamma)$ is given by: an edge incident with $v_{i} \in V_{E}$ is + or - if $e \in E(G)$ is + or -; an edge incident with $v_{j} \in V_{V}$ is internal, and an edge incident with $v_{j} \in V_{F}$ is external; and an edge is live if it connects the lowest-ordered $v_{i} \in V_{E}$ to the vertex $v_{j} \in V_{V} \sqcup V_{F}$ and dead otherwise.

Activity weighting $\alpha(\varepsilon)$: bipartite adjacency submatrix

The entries of the bipartite adjacency submatrix associated to the balanced overlaid Tait graph Γ obey the following rules:
ordered rows associated with V_{E} are all positive or all negative;
columns associated with V_{V} are internal and V_{F} are external;
the first non-zero entry in a column is live, the rest are dead.

$\left(\begin{array}{ccc} L & & \\ D & \ddots & \\ & \ddots & L \\ & & D \end{array}\right.$				L		$\begin{gathered} \ell \\ d \\ \vdots \\ d \end{gathered}$
	$\begin{array}{ccc} \hline L & & \\ D & \ddots & \\ & \ddots & L \\ & & D \end{array}$			D		
		\because.		:		$\ddots \quad \vdots$
			$\begin{array}{lll} \hline L & & \\ D & \ddots & \\ & \ddots & L \\ & & D \end{array}$	D		d d \vdots d

A note on the proof

The proof that the terms in the determinant expansion give the exact activity words for the pretzel knots comes from a technical lemma (C.) on the activity of paths.

One difficulty to extending this class is producing
a complete list of activity words for more general knots.

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The trefoil, 8_{19}, and the $(-2,3,7)$-pretzel knot Extending this class; applications to Khovanov homology Future work

Example 1: the Jones polynomial for the trefoil

Example 1: the (1, 1, 1)-pretzel knot

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The trefoil, 8_{19}, and the $(-2,3,7)$-pretzel knot Extending this class; applications to Khovanov homology Future work

Example 1: the Jones polynomial for the trefoil

Tait graph G

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The trefoil, 8_{19}, and the $(-2,3,7)$-pretzel knot Extending this class; applications to Khovanov homology Future work

Example 1: the Jones polynomial for the trefoil

balanced overlaid Tait graph 「

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

Example 1: the Jones polynomial for the trefoil

The spanning trees give activity words (Ldd), ($\ell D d$), and ($\ell \ell D)$:

$$
\left(\begin{array}{c|cc}
L & \ell & \\
\hline D & -d & \ell \\
\hline D & & -d
\end{array}\right)
$$

With writhe $\left(-A^{-3}\right)^{-3}$, the determinant is $A^{4}+A^{12}-A^{16}=$ $t^{-1}+t^{-3}-t^{-4}$, the Jones polynomial of the trefoil.

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The trefoil, 8_{19}, and the $(-2,3,7)$-pretzel knot Extending this class; applications to Khovanov homology Future work

Example 2: the Jones polynomial for 8_{19}

Example 2: the (-2, 3, 3)-pretzel knot

The trefoil, 8_{19}, and the ($-2,3,7$)-pretzel knot Extending this class; applications to Khovanov homology Future work

Example 2: the Jones polynomial for 8_{19}

Tait graph G

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The trefoil, 8_{19}, and the $(-2,3,7)$-pretzel knot Extending this class; applications to Khovanov homology Future work

Example 2: the Jones polynomial for 8_{19}

balanced overlaid Tait graph 「

Example 2: the Jones polynomial for 8_{19}

$$
\left(\begin{array}{c|c|c|c|c|cc}
\bar{L} & & & & & & \bar{\ell} \\
\bar{D} & & & & & \bar{L} & -\bar{d} \\
\hline & -L & & & & D & d \\
& D & -L & & & & d \\
& & D & & & d \\
& & & L & & & d \\
& & -D & & d \\
& & & & -D & L & \\
& & & & & d \\
\hline & & & d
\end{array}\right)
$$

With writhe $\left(-A^{-3}\right)^{8}$, the determinant is $-A^{-32}+A^{-20}+A^{-12}$ $=-t^{8}+t^{5}+t^{3}$, the Jones polynomial of 8_{19}.

Example 3: the Jones polynomial for the (-2,3,7)-pretzel knot

With writhe $\left(-A^{-3}\right)^{12}$, the determinant is
$-A^{-40}+A^{-36}-A^{-32}+A^{-16}+A^{-8}=-t^{10}+t^{9}-t^{8}+t^{2}$.

Leaving the class of pretzel knots

Property: (Subdivision/Doubling)

Let $e_{n} \in E(G)$ be incident with the omitted vertex and face.
Then if the activity weighting on Γ provides a dimer model for G, this can be extended to one for $G \cup\left\{e_{n+1}\right\}$ that subdivides or doubles e_{n}.

Leaving the class of pretzel knots

Proof:

Row e_{n} in squared incidence matrix only has D and d.
Subdivide to get a new row e_{n+1} and a new vertex column.
Entries in this column are 0 except for L and D.
Determinant expansion terms give $D D$ and $d D$, preserving the first n pivots, or $L d$, preserving the first $n-1$ pivots.

These cases are exactly the possibilities for activity words.

The dual case of doubling works similarly. \square

Graph and knot polynomials
Constructing the activity matrix
Examples, more results, and questions

The trefoil, 8_{19}, and the $(-2,3,7)$-pretzel knot
Extending this class; applications to Khovanov homology Future work

Another corollary to the Main Theorem

Reduced Khovanov homology chain complex CKh:

$a(e, S)$	L	D	ℓ	d	\bar{L}	\bar{D}	$\bar{\ell}$	\bar{d}
$a(e, S) \mid K$	$u v$	v	u^{-1}	1	u^{-1}	1	u	1

Another corollary to the Main Theorem

Corollary:

Summing over all perfect matchings μ in Γ and taking the product over all edges $\varepsilon \in \mu$,

$$
\sum_{\mu} \prod_{\varepsilon \in \mu} \alpha(\varepsilon) \mid \kappa
$$

gives the two-variable polynomial ${\widetilde{C K} h_{P}(q, t) \text { for }}^{\text {a }}$ the reduced Khovanov chain complex of P up to sign.

Questions

What can these easy computations teach us about the Jones polynomial of the class of pretzel knots?

The activity weighting can be extended to a larger class of knots, but how far can it go?

The first-order differential of reduced Khovanov homology can be found in the activity matrix, but the higher-order ones?

