> Kauffman's clock lattice as a graph of perfect matchings: a formula for its height

> > Moshe Cohen www.math.biu.ac.il/~cohenm10/

> > > Joint with Mina Teicher

Bar-Ilan University, Israel

Brandeis University, September 20th, 2012

Outline

Translating a knot into a graph

- Background from Knot Theory
- The balanced overlaid Tait graph Γ
- An example and applications
- 2 Properties of Γ and the graph G of perfect matchings
 - The Periphery Proposition and other properties of Γ
 - The graph G as Kauffman's clock lattice L
 - Main Results

3 Proofs

- Partition Theorem
- 0,1 Theorem
- Diameter Theorem

・ロト ・同ト ・ヨト ・ヨト

Combinatorics and Topology

Motivation and Goals:

What does the combinatorics of a knot tell us about its topology?

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Combinatorics and Topology

Motivation and Goals:

What does the combinatorics of a knot tell us about its topology?

Can topological properties be rephrased in terms of combinatorial properties?

イロト イポト イヨト イヨト

Combinatorics and Topology

Motivation and Goals:

What does the combinatorics of a knot tell us about its topology?

Can topological properties be rephrased in terms of combinatorial properties?

イロト イポト イヨト イヨト

Translate a knot into a simple combinatorial object, employ combinatorial techniques, and translate back.

Background from Knot Theory The balanced overlaid Tait graph Γ An example and applications

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Background from Knot Theory

A *knot* K is S^1 embedded in S^3 .

Background from Knot Theory The balanced overlaid Tait graph Γ An example and applications

・ロト ・ 日 ・ ・ ヨ ・

Background from Knot Theory

A *knot* K is S^1 embedded in S^3 .

A *knot diagram* D is the projection of the knot onto \mathbb{R}^2 with under- and over-crossing information.

Background from Knot Theory The balanced overlaid Tait graph Γ An example and applications

イロト イボト イヨト イヨト

Background from Knot Theory

A *knot* K is S^1 embedded in S^3 .

A *knot diagram* D is the projection of the knot onto \mathbb{R}^2 with under- and over-crossing information.

Theorem: (Reidemeister 1926)

Two diagrams represent the same knot \Leftrightarrow there is a sequence of Reidemeister moves taking one to the other.

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph Γ An example and applications

・ロト ・日ト ・ヨト ・ヨト

Background from Knot Theory

Moshe Cohen, Mina Teicher (Bar-Ilan University, Israel) The height of Kauffman's clock lattice

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph Γ An example and applications

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Background from Knot Theory

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph Γ An example and applications

イロト イヨト イヨト イヨト

Background from Knot Theory

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph Γ An example and applications

イロト イポト イヨト イ

Background from Knot Theory

A *knot invariant* is an evaluation on a knot diagram that is constant under each of the three *Reidemeister moves*.

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph Γ An example and applications

イロト イヨト イヨト イヨト

Background from Knot Theory

The crossing here is an example of a nugatory crossing.

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph Γ An example and applications

イロト イポト イヨト イヨト

Background from Knot Theory

The crossing here is an example of a nugatory crossing.

Definition:

A crossing is called *nugatory* if there is a circle meeting the diagram transversely at the crossing but at no other point.

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph Γ An example and applications

イロト イポト イヨト イヨ

Background from Knot Theory

The crossing here is an example of a nugatory crossing.

Definition:

A crossing is called *nugatory* if there is a circle meeting the diagram transversely at the crossing but at no other point.

We assume our knot diagrams have no nugatory crossings.

Background from Knot Theory The balanced overlaid Tait graph F An example and applications

・ロト ・日ト ・日ト・日ト

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or -1.

ヘロト 人間 ト 人間 ト 人 同 ト

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or -1.

Checkerboard color the regions of a knot diagram D.

イロト イボト イヨト

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or -1.

Checkerboard color the regions of a knot diagram D.

Definition:

The **signed Tait graph** *G* associated with *D* has $V(G) = \{\text{colored regions}\} \text{ and } E(G) = \{\text{crossings of } D\}.$

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or -1.

Checkerboard color the regions of a knot diagram D.

Definition:

The **signed Tait graph** *G* associated with *D* has $V(G) = \{\text{colored regions}\} \text{ and } E(G) = \{\text{crossings of } D\}.$

Note that the dual G^* comes from the uncolored regions.

Background from Knot Theory The balanced overlaid Tait graph F An example and applications

イロト イボト イヨト

Graphs from knots: the overlaid Tait graph F

Definition:

The *overlaid Tait graph* $\widehat{\Gamma}$ associated with *D* is bipartite with $V(\widehat{\Gamma}) = [E(G) \cap E(G^*)] \sqcup [V(G) \sqcup V(G^*)]$ and

 $E(\widehat{\Gamma})$ the half-edges of G and G^* .

Background from Knot Theory The balanced overlaid Tait graph F An example and applications

イロト イヨト イヨト イヨト

Graphs from knots: the overlaid Tait graph F

Definition:

The overlaid Tait graph $\widehat{\Gamma}$ associated with *D* is bipartite with

 $V(\widehat{\Gamma}) = [E(G) \cap E(G^*)] \sqcup [V(G) \sqcup V(G^*)]$ and

 $E(\widehat{\Gamma})$ the half-edges of G and G^* .

Each face in the overlaid Tait graph $\widehat{\Gamma}$ is a square.

イロト イボト イヨト イヨト

Graphs from knots: the balanced overlaid Tait graph F

Definition:

The **balanced overlaid Tait graph** Γ associated with *D* is obtained from $\widehat{\Gamma}$ by removing two vertices from the larger set that lie on the same face:

イロト イヨト イヨト イヨト

Graphs from knots: the balanced overlaid Tait graph F

Definition:

The **balanced overlaid Tait graph** Γ associated with *D* is obtained from $\widehat{\Gamma}$ by removing two vertices from the larger set that lie on the same face:

"Balanced" means the two vertex sets are the same size.

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph F An example and applications

・ロト ・回ト ・ヨト・ ヨト・

Э

Graphs from knots: the signed Tait graph G

The knot 8_{19} as the (-2, 3, 3)-pretzel knot,

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph F An example and applications

ヘロア 人間 アメヨア 人間アー

э

Graphs from knots: the signed Tait graph G

a checkerboard coloring,

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph F An example and applications

・ロト ・回ト ・ヨト・ ヨト・

Э

Graphs from knots: the signed Tait graph G

the corresponding signed Tait graph G,

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph F An example and applications

・ロト ・回ト ・ヨト・ ヨト・

Э

Graphs from knots: the signed Tait graph G

the dual signed Tait graph G*,

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph F An example and applications

・ロト ・回ト ・ヨト・ ヨト・

Graphs from knots: the balanced overlaid Tait graph F

the overlaid Tait graph $\widehat{\Gamma}$ (all faces are square),

Properties of Γ and the graph G of perfect matchings Proofs Background from Knot Theory The balanced overlaid Tait graph F An example and applications

ヘロア 人間 アメヨア 人間アー

Graphs from knots: the balanced overlaid Tait graph F

and the balanced overlaid Tait graph Γ.

Background from Knot Theory The balanced overlaid Tait graph F An example and applications

イロト イボト イヨト

Graphs from knots: the balanced overlaid Tait graph F

Remarks:

This graph can be weighted to carry crossing information.

Background from Knot Theory The balanced overlaid Tait graph F An example and applications

イロト イボト イヨト イヨト

Graphs from knots: the balanced overlaid Tait graph F

Remarks:

This graph can be weighted to carry crossing information.

Further weightings on this graph have been used to obtain *dimer (perfect matching) models* for

イロト イボト イヨト イヨト

Graphs from knots: the balanced overlaid Tait graph F

Remarks:

This graph can be weighted to carry crossing information.

Further weightings on this graph have been used to obtain *dimer (perfect matching) models* for

 ♦ the Alexander polynomial Δ_K(t) of a knot K (C-Dasbach-Russell [CDR12])

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Graphs from knots: the balanced overlaid Tait graph F

Remarks:

This graph can be weighted to carry crossing information.

Further weightings on this graph have been used to obtain *dimer (perfect matching) models* for

- ♦ the Alexander polynomial Δ_K(t) of a knot K
 (C-Dasbach-Russell [CDR12])
- the Jones polynomial of a pretzel knot (C- [Coh12])

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Graphs from knots: the balanced overlaid Tait graph F

Remarks:

This graph can be weighted to carry crossing information.

Further weightings on this graph have been used to obtain *dimer (perfect matching) models* for

- ♦ the Alexander polynomial $\Delta_{K}(t)$ of a knot K (C-Dasbach-Russell [CDR12])
- the Jones polynomial of a pretzel knot (C- [Coh12])
- (using *p*-lifts) the twisted Alexander polynomial of a knot together with a representation (C-Dasbach-Russell [CDR12])

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Graphs from knots: the balanced overlaid Tait graph F

Applications:

- ♦ (Huggett-Mofatt-Virdee) $\widehat{\Gamma}$ to study ribbon graphs from cables
- (Kravchenko-Polyak) Γ obtained on a torus and cluster algebras
- ♦ (Kidwell-Luse) "One-spinners" generalizing Abe's clock number.

イロト イボト イヨト イヨト

Graphs from knots: the balanced overlaid Tait graph F

Applications:

- \diamond (Huggett-Mofatt-Virdee) $\widehat{\Gamma}$ to study ribbon graphs from cables
- (Kravchenko-Polyak) Γ obtained on a torus and cluster algebras
- ♦ (Kidwell-Luse) "One-spinners" generalizing Abe's clock number.
- (Koseleff-Pecker) Every knot has a projection that is *Chebyshev*.
 Thus every knot has a Γ which is a grid graph.
- ♦ Perfect matchings of $\Gamma \leftrightarrow$ discrete Morse functions of a 2-cx of S^2 .
イロト イボト イヨト イヨト

Graphs from knots: the balanced overlaid Tait graph F

Applications:

- \diamond (Huggett-Mofatt-Virdee) $\widehat{\Gamma}$ to study ribbon graphs from cables
- (Kravchenko-Polyak) Γ obtained on a torus and cluster algebras
- ♦ (Kidwell-Luse) "One-spinners" generalizing Abe's clock number.
- (Koseleff-Pecker) Every knot has a projection that is *Chebyshev*.
 Thus every knot has a Γ which is a grid graph.
- ♦ Perfect matchings of $\Gamma \leftrightarrow$ discrete Morse functions of a 2-cx of S^2 .
- ♦ (Future work) Perfect matching models for knot homologies.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

ヘロト 人間 ト 人間 ト 人 同 ト

The Periphery Proposition

The *periphery* is the cycle on the outer infinite face.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The Periphery Proposition

The *periphery* is the cycle on the outer infinite face.

Basic properties of Γ (by construction):

♦ The graph is plane bipartite,

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The Periphery Proposition

The *periphery* is the cycle on the outer infinite face.

Basic properties of Γ (by construction):

- ♦ The graph is plane bipartite,
- Il faces are squares (except the outer face),

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The Periphery Proposition

The *periphery* is the cycle on the outer infinite face.

Basic properties of Γ (by construction):

- ♦ The graph is plane bipartite,
- Ill faces are squares (except the outer face),
- $\diamond\,$ all black vertices (\bullet) not on the periphery are 4-valent, and

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

イロト イヨト イヨト イヨト

The Periphery Proposition

The *periphery* is the cycle on the outer infinite face.

Basic properties of Γ (by construction):

- ♦ The graph is plane bipartite,
- all faces are squares (except the outer face),
- \diamond all black vertices (\bullet) not on the periphery are 4-valent, and

Proposition:

The balanced overlaid Tait graph Γ for a diagram with no nugatory crossings satisfies the Periphery Proposition.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The Periphery Proposition

The Periphery Proposition:

- $\diamond~$ Two of the black vertices (\bullet) on the periphery have valence 2
- and the rest have valence 3.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The Periphery Proposition

The Periphery Proposition:

- $\diamond~$ Two of the black vertices (\bullet) on the periphery have valence 2
- and the rest have valence 3.

Proof:

Let n_i be the number of black vertices (\bullet) of valence *i*.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

・ロト ・日ト ・日ト・日ト

The Periphery Proposition

The Periphery Proposition:

- ◊ Two of the black vertices (●) on the periphery have valence 2
- and the rest have valence 3.

Proof:

Let n_i be the number of black vertices (\bullet) of valence *i*.

Lemma: $n_1 = 0$. Balanced $\Rightarrow |V| = 2(n_2 + n_3 + n_4)$.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

・ロト ・回ト ・ヨト・ ヨト・

The Periphery Proposition

The Periphery Proposition:

- $\diamond~$ Two of the black vertices (\bullet) on the periphery have valence 2
- and the rest have valence 3.

Proof:

Let n_i be the number of black vertices (\bullet) of valence *i*.

Lemma: $n_1 = 0$. Balanced $\Rightarrow |V| = 2(n_2 + n_3 + n_4)$.

 $|E| = 2n_2 + 3n_3 + 4n_4$. Plane $\Rightarrow |F| = 2 + n_3 + 2n_4$.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

・ロト ・ 日 ト ・ ヨ ト ・ 日 ト

The Periphery Proposition

The Periphery Proposition:

- $\diamond~$ Two of the black vertices (\bullet) on the periphery have valence 2
- and the rest have valence 3.

Proof:

Let n_i be the number of black vertices (\bullet) of valence *i*.

Lemma: $n_1 = 0$. Balanced $\Rightarrow |V| = 2(n_2 + n_3 + n_4)$. $|E| = 2n_2 + 3n_3 + 4n_4$. Plane $\Rightarrow |F| = 2 + n_3 + 2n_4$.

Lemma: $n_4 = 0$ on periphery. Periphery of length $2(n_2 + n_3)$.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

The Periphery Proposition

The Periphery Proposition:

- $\diamond~$ Two of the black vertices (\bullet) on the periphery have valence 2
- and the rest have valence 3.

Proof:

Let n_i be the number of black vertices (\bullet) of valence *i*. Lemma: $n_1 = 0$. $|E| = 2n_2 + 3n_3 + 4n_4$. Lemma: $n_4 = 0$ on periphery. $2|E| = 4(|F| - 1) + (1)(2(n_2 + n_3))$ $\Rightarrow n_2 = 2$.

・ロト ・日ト ・ヨト ・ヨト

Properties of the balanced overlaid Tait graph Γ

A *universe* is a knot diagram with no crossing information.

イロト イボト イヨト イヨト

Properties of the balanced overlaid Tait graph Γ

A *universe* is a knot diagram with no crossing information.

Proposition:

A balanced overlaid Tait graph Γ gives a unique universe.

イロト イポト イヨト イヨト

Properties of the balanced overlaid Tait graph Γ

A *universe* is a knot diagram with no crossing information.

Proposition:

A balanced overlaid Tait graph Γ gives a unique universe.

Proof:

イロト イポト イヨト イヨト

Properties of the balanced overlaid Tait graph Γ

A *universe* is a knot diagram with no crossing information.

Proposition:

A balanced overlaid Tait graph Γ gives a unique universe.

Proof:

イロト イボト イヨト イヨト

Connectivity

Remark:

The following restrictive notion is used here for the proof, but a technique from some previous group work achieves full generality.

イロト イボト イヨト イヨト

Connectivity

Remark:

The following restrictive notion is used here for the proof, but a technique from some previous group work achieves full generality.

Definition:

A knot *K* is *prime* if when $K = K_1 \# K_2$, some K_i =unknot. A knot diagram *D* is *prime-like* if when $D = D_1 \# D_2$, some D_i has no crossings.

イロト イボト イヨト イヨト

Γ is elementary

Definition:

An edge of a graph is *allowed* if it lies in some perfect matching of the graph and *forbidden* otherwise. A graph is *elementary* if its allowed edges form a connected subgraph of the graph.

イロト イボト イヨト イヨト

Γ is elementary

Definition:

An edge of a graph is *allowed* if it lies in some perfect matching of the graph and *forbidden* otherwise. A graph is *elementary* if its allowed edges form a connected subgraph of the graph.

Theorem: (Lovasz-Plummer 1986, Theorem 4.1.1) [LP86]

A bipartite graph is elementary if and only if it is connected and every edge is allowed.

イロト イボト イヨト イヨト

Γ is elementary

Definition:

An edge of a graph is *allowed* if it lies in some perfect matching of the graph and *forbidden* otherwise. A graph is *elementary* if its allowed edges form a connected subgraph of the graph.

Theorem: (Lovasz-Plummer 1986, Theorem 4.1.1) [LP86]

A bipartite graph is elementary if and only if it is connected and every edge is allowed.

Theorem:

The balanced overlaid Tait graph Γ for a prime-like knot diagram with no nugatory crossings is an elementary graph.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

イロト イボト イヨト イヨト

Γ is 2-connected

Definition:

A graph Γ is said to be *n*-extendable if it is connected, has a set of *n* independent lines, and every set of *n* independent lines in Γ extends to (i.e. is a subset of) a perfect matching of Γ .

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

イロト イボト イヨト イヨト

Γ is 2-connected

Definition:

A graph Γ is said to be *n*-extendable if it is connected, has a set of *n* independent lines, and every set of *n* independent lines in Γ extends to (i.e. is a subset of) a perfect matching of Γ .

By above, an elementary bipartite graph is 1-extendable.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

イロト イボト イヨト イヨト

Γ is 2-connected

Definition:

A graph Γ is said to be *n*-extendable if it is connected, has a set of *n* independent lines, and every set of *n* independent lines in Γ extends to (i.e. is a subset of) a perfect matching of Γ .

By above, an elementary bipartite graph is 1-extendable.

Lemma: (Plummer 1980, Lemma 3.1)

Every 1-extendable graph (that is not K_2) is 2-connected.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Γ is 2-connected

Definition:

A graph Γ is said to be *n*-extendable if it is connected, has a set of *n* independent lines, and every set of *n* independent lines in Γ extends to (i.e. is a subset of) a perfect matching of Γ .

By above, an elementary bipartite graph is 1-extendable.

Lemma: (Plummer 1980, Lemma 3.1)

Every 1-extendable graph (that is not K_2) is 2-connected.

Proposition:

The balanced overlaid Tait graph Γ for a prime-like knot diagram with no nugatory crossings is 2-connected.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

・ロト ・日ト ・日ト・日ト

The graph G of perfect matchings

Now consider the graph G of perfect matchings of Γ .

・ロト ・日ト ・ヨト ・ヨト

The graph \mathcal{G} of perfect matchings

Now consider the graph G of perfect matchings of Γ .

Each vertex of G is a perfect matching of Γ .

Each edge of \mathcal{G} corresponds with a (bipartite) flip move.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The graph \mathcal{G} of perfect matchings

Now consider the graph G of perfect matchings of Γ .

Each vertex of G is a perfect matching of Γ .

Each edge of \mathcal{G} corresponds with a (bipartite) flip move.

Kauffman studied a similar object to obtain $\Delta_{\mathcal{K}}(t)$:

Kauffman [Kau83]	C-Teicher
universe U	balanced overlaid Tait graph Γ
state	perfect matching of Γ
clock move	(bipartite) flip move

The graph G of perfect matchings

Moshe Cohen, Mina Teicher (Bar-Ilan University, Israel)

The height of Kauffman's clock lattice

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

An example of \mathcal{G} from Abe

Moshe Cohen, Mina Teicher (Bar-Ilan University, Israel)

The height of Kauffman's clock lattice

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The graph \mathcal{G} of perfect matchings

Theorem: (Kauffman, Clock Theorem 2.5.) [Kau83]

Let *U* be a universe and δ the set of states of *U* for a given choice of adjacent fixed stars.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The graph \mathcal{G} of perfect matchings

Theorem: (Kauffman, Clock Theorem 2.5.) [Kau83]

Let *U* be a universe and δ the set of states of *U* for a given choice of adjacent fixed stars.

Then δ has a unique clocked state and a unique counterclocked state.

イロト イボト イヨト イヨト

The graph \mathcal{G} of perfect matchings

Theorem: (Kauffman, Clock Theorem 2.5.) [Kau83]

Let *U* be a universe and δ the set of states of *U* for a given choice of adjacent fixed stars.

Then δ has a unique clocked state and a unique counterclocked state.

Any state in δ can be reached from the clocked (counterclocked) state by a series of clockwise (counterclockwise) moves.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The graph \mathcal{G} of perfect matchings

Theorem: (Kauffman, Clock Theorem 2.5.) [Kau83]

Let *U* be a universe and δ the set of states of *U* for a given choice of adjacent fixed stars.

Then δ has a unique clocked state and a unique counterclocked state.

Any state in δ can be reached from the clocked (counterclocked) state by a series of clockwise (counterclockwise) moves.

Hence any two states in δ are connected by a series of state transpositions.

・ロト ・日ト ・日ト・日ト

The graph G of perfect matchings

Kauffman [Kau83]	C-Teicher
Clock Lattice L	graph of perfect matchings ${\cal G}$

イロト イボト イヨト イヨト

The graph \mathcal{G} of perfect matchings

Kauffman [Kau83]	C-Teicher
Clock Lattice L	graph of perfect matchings ${\cal G}$

Notation:

Denote the unique minimum by $\widehat{0}$ and the unique maxium by $\widehat{1}$ of the connected lattice *L*. Let *h* be the height of this lattice.
The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

The graph \mathcal{G} of perfect matchings

Kauffman [Kau83]	C-Teicher
Clock Lattice L	graph of perfect matchings ${\cal G}$

Notation:

Denote the unique minimum by $\widehat{0}$ and the unique maxium by $\widehat{1}$ of the connected lattice *L*. Let *h* be the height of this lattice.

The *diameter* of a graph is the maximum of the shortest distance between any two vertices taken over all pairs of vertices.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

イロト イボト イヨト イヨト

The graph \mathcal{G} of perfect matchings

Kauffman [Kau83]	C-Teicher
Clock Lattice L	graph of perfect matchings ${\cal G}$

Notation:

Denote the unique minimum by $\widehat{0}$ and the unique maxium by $\widehat{1}$ of the connected lattice *L*. Let *h* be the height of this lattice.

The *diameter* of a graph is the maximum of the shortest distance between any two vertices taken over all pairs of vertices.

Proposition:

The height *h* of the clock lattice *L* is the diameter of the graph \mathcal{G} .

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

ヘロト 人間 ト 人間 ト 人 同 ト

The graph G of perfect matchings

Proposition:

The height *h* of the clock lattice *L* is the diameter of the graph G.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

ヘロト 人間 ト 人間 ト 人間 トー

The graph G of perfect matchings

Proposition:

The height *h* of the clock lattice *L* is the diameter of the graph G.

Proof:

 $d(\widehat{0},\widehat{1}) = h$, so enough to show no larger distance.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

The graph G of perfect matchings

Proposition:

The height *h* of the clock lattice *L* is the diameter of the graph G.

Proof:

 $d(\widehat{0},\widehat{1}) = h$, so enough to show no larger distance.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice LMain Results

・ロト ・日ト ・日ト・日ト

3

The graph G of perfect matchings

Definition:

Let h + 1 be the *clock number of the starred diagram* p(D).

The Periphery Proposition and other properties of Γ The graph G as Kauffman's clock lattice LMain Results

イロト イボト イヨト イヨト

The graph G of perfect matchings

Definition:

Let h + 1 be the *clock number of the starred diagram* p(D).

Abe defines a knot invariant by taking the minimum of p(D) over all starred diagrams of a knot K, calling this the *clock number* p(K) of the knot K. [Abe11]

The Periphery Proposition and other properties of Γ The graph G as Kauffman's clock lattice LMain Results

イロト イヨト イヨト イヨト

The graph G of perfect matchings

Definition:

Let h + 1 be the clock number of the starred diagram p(D).

Abe defines a knot invariant by taking the minimum of p(D) over all starred diagrams of a knot *K*, calling this the *clock number* p(K) of the knot *K*. [Abe11]

Theorem: (Abe 2011) [Abe11]

 $p(K) \ge c(K)$, the crossing number of K with equality if and only if K is a 2-bridge knot.

The Periphery Proposition and other properties of Γ The graph G as Kauffman's clock lattice *L* Main Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Partitioning the vertices of Γ

Main construction idea:

Partition the vertices of the balanced overlaid Tait graph Γ into leaves $\ell \in \mathcal{L}$ and cycles C_i .

The Periphery Proposition and other properties of Γ The graph G as Kauffman's clock lattice *L* Main Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Partitioning the vertices of Γ

Main construction idea:

Partition the vertices of the balanced overlaid Tait graph Γ into leaves $\ell \in \mathcal{L}$ and cycles C_i .

Notation:

Denote by Γ_i the *interior graph* within and including cycle C_i .

The Periphery Proposition and other properties of Γ The graph G as Kauffman's clock lattice *L* Main Results

イロト イボト イヨト イヨト

Partitioning the vertices of Γ

Main construction idea:

Partition the vertices of the balanced overlaid Tait graph Γ into leaves $\ell \in \mathcal{L}$ and cycles C_i .

Notation:

Denote by Γ_i the *interior graph* within and including cycle C_i .

Remark:

These cycles C_i emerge when the symmetric difference is taken of $\widehat{0}$ and $\widehat{1}$ in Kauffman's clock lattice *L*!

The Periphery Proposition and other properties of Γ The graph G as Kauffman's clock lattice *L* Main Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Partitioning the vertices of Γ

The clocked and counterclocked states of a diagram for K11n157.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice *L* Main Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Partitioning the vertices of Γ

The superposition of these two states of a diagram for K11n157.

The Periphery Proposition and other properties of Γ The graph G as Kauffman's clock lattice *L* Main Results

イロト イボト イヨト イヨト

Partitioning the vertices of Γ

Partition Theorem:

Consider the balanced overlaid Tait graph Γ for a prime-like knot diagram with no nugatory crossings. Then the vertices can be partitioned into leaves $\ell \in \mathcal{L}$ and cycles C_i , where each cycle C_i satisfies the Periphery Proposition and where each interior graph Γ_i is elementary and 2-connected.

The Periphery Proposition and other properties of Γ The graph G as Kauffman's clock lattice *L* Main Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Partitioning the vertices of Γ

Definition:

A cycle/path is (μ_1, μ_2) -alternating if the edges alternate between the two matchings μ_1 and μ_2 .

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice *L* Main Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Partitioning the vertices of Γ

Definition:

A cycle/path is (μ_1, μ_2) -alternating if the edges alternate between the two matchings μ_1 and μ_2 .

$\widehat{0}, \widehat{1}$ Theorem:

Each C_i is $(0, \hat{1})$ -alternating.

Furthermore, the leaves appear in both of these states.

The Periphery Proposition and other properties of Γ The graph \mathcal{G} as Kauffman's clock lattice *L* Main Results

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Properties of the balanced overlaid Tait graph Γ

Diameter Theorem:

Consider the balanced overlaid Tait graph Γ , and

let $s(C_i)$ be the number of square faces within interior graph Γ_i . Then

$$\sum_i s(C_i) = h$$

gives the height of the clock lattice.

The Periphery Proposition and other properties of Γ The graph G as Kauffman's clock lattice LMain Results

・ロト ・日ト ・日ト・日ト

An example using the diameter theorem

The height of the lattice is 15 + 5 = 20.

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

イロト イポト イヨト イヨト

Proof of the Partition Theorem

Partition Theorem:

Consider the balanced overlaid Tait graph Γ for a prime-like knot diagram with no nugatory crossings. Then the vertices can be partitioned into leaves $\ell \in \mathcal{L}$ and cycles C_i , where each cycle C_i satisfies the Periphery Proposition and where each interior graph Γ_i is elementary and 2-connected.

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

・ロト ・日ト ・日ト・日ト

Proof of the Partition Theorem

Base Case:

The periphery $C = C_1$ on the infinite face already satisfies the Periphery Proposition, and the interior graph $\Gamma = \Gamma_1$ is both elementary and 2-connected.

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

ヘロト 人間 ト 人間 ト 人間 トー

Proof of the Partition Theorem

Base Case:

The periphery $C = C_1$ on the infinite face already satisfies the Periphery Proposition, and the interior graph $\Gamma = \Gamma_1$ is both elementary and 2-connected.

Construction of C_i:

Delete all vertices of C_{i-1} from the graph Γ_{i-1} to obtain a new graph Γ'_i , and consider its periphery C'_i .

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

Proof of the Partition Theorem

Base Case:

The periphery $C = C_1$ on the infinite face already satisfies the Periphery Proposition, and the interior graph $\Gamma = \Gamma_1$ is both elementary and 2-connected.

Construction of C_i:

Delete all vertices of C_{i-1} from the graph Γ_{i-1}

to obtain a new graph Γ'_i , and consider its periphery C'_i .

If C'_i has several components, treat each C'_i, C'_{i+1}, \ldots separately.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

Proof of the Partition Theorem

Base Case:

The periphery $C = C_1$ on the infinite face already satisfies the Periphery Proposition, and the interior graph $\Gamma = \Gamma_1$ is both elementary and 2-connected.

Construction of C_i:

Delete all vertices of C_{i-1} from the graph Γ_{i-1}

to obtain a new graph Γ'_i , and consider its periphery C'_i .

If C'_i has several components, treat each C'_i, C'_{i+1}, \ldots separately.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If C'_i is a single cycle with no cutvertices, $C'_i = C_i$ and $\Gamma'_i = \Gamma_i$.

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

ヘロト 人間 ト 人間 ト 人間 トー

3

Proof of the Partition Theorem

Otherwise there is some cutvertex v. Perform these operations:

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

イロト イポト イヨト イヨト

Proof of the Partition Theorem

Otherwise there is some cutvertex v. Perform these operations:

"Pruning" leaves:

Suppose *v* is incident with a leaf. Delete all edges incident with *v*. Collect all of the leaves pruned in the set \mathcal{L}_{i-1} .

Proof of the Partition Theorem

Otherwise there is some cutvertex v. Perform these operations:

"Pruning" leaves:

Suppose *v* is incident with a leaf. Delete all edges incident with *v*. Collect all of the leaves pruned in the set \mathcal{L}_{i-1} .

"Breaking" cutvertices:

Suppose the deletion of v results in several components, each of which contains a cycle (with v).

Also suppose there is exactly one component C^{odd} that has an odd number of vertices (not including *v*).

イロト イヨト イヨト イヨト

Delete all edges incident with v except for those in C^{odd} .

イロト イボト イヨト イヨト

Need to show there is exactly one odd component

Definition:

A face of a 2-connected plane bipartite graph is called *resonant* if its boundary is a μ -alternating cycle w.r.t. some μ .

Need to show there is exactly one odd component

Definition:

A face of a 2-connected plane bipartite graph is called *resonant* if its boundary is a μ -alternating cycle w.r.t. some μ .

Theorem: (Zhang-Zhang 2000)

Every face in a plane bipartite G is resonant \Leftrightarrow G is elementary.

イロト イポト イヨト イヨト

Need to show there is exactly one odd component

Definition:

A face of a 2-connected plane bipartite graph is called *resonant* if its boundary is a μ -alternating cycle w.r.t. some μ .

Theorem: (Zhang-Zhang 2000)

Every face in a plane bipartite G is resonant \Leftrightarrow G is elementary.

Theorem: (Tutte 1947)

A graph *G* has a perfect matching \Leftrightarrow the number of odd components of *G* – *S* is |*S*| for all *S* ⊂ *V*.

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Need to show there is exactly one odd component

Lemma:

After deleting v, there is exactly one odd component.

ヘロト 人間 ト 人間 ト 人 同 ト

Need to show there is exactly one odd component

Lemma:

After deleting v, there is exactly one odd component.

Proof:

 Γ_{i-1} is elementary \Rightarrow periphery C_{i-1} is μ -alternating for some μ .

イロト イボト イヨト イヨト

Need to show there is exactly one odd component

Lemma:

After deleting v, there is exactly one odd component.

Proof:

 Γ_{i-1} is elementary \Rightarrow periphery C_{i-1} is μ -alternating for some μ .

 μ includes leaves between C_{i-1} and any interior cycles.

Need to show there is exactly one odd component

Lemma:

After deleting v, there is exactly one odd component.

Proof:

 Γ_{i-1} is elementary \Rightarrow periphery C_{i-1} is μ -alternating for some μ . μ includes leaves between C_{i-1} and any interior cycles. μ restricts to the remaining graph (*G*) with $S = \{v\}$, and so there is exactly one odd component. \Box

ヘロト 人間 ト 人間 ト 人 同 ト

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

イロト イヨト イヨト イヨト

3

Finishing the proof: C_i and Γ_i

Left to show each C_i satisfies the Periphery Proposition.

Partition Theorem 0, 1 Theorem Diameter Theorem

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Finishing the proof: C_i and Γ_i

Left to show each C_i satisfies the Periphery Proposition.

Want to use the same proof; already have no black leaves.

イロト イボト イヨト イヨト

Finishing the proof: C_i and Γ_i

Left to show each C_i satisfies the Periphery Proposition.

Want to use the same proof; already have no black leaves.

Sublemma:

There can be no four-valent black vertices (\bullet) on the cycle C_i .
イロト イボト イヨト イヨト

Finishing the proof: C_i and Γ_i

Left to show each C_i satisfies the Periphery Proposition.

Want to use the same proof; already have no black leaves.

Sublemma:

There can be no four-valent black vertices (\bullet) on the cycle C_i .

The graph Γ_i is 2-connected by construction.

イロト イボト イヨト イヨト

Finishing the proof: C_i and Γ_i

Left to show each C_i satisfies the Periphery Proposition.

Want to use the same proof; already have no black leaves.

Sublemma:

There can be no four-valent black vertices (\bullet) on the cycle C_i .

The graph Γ_i is 2-connected by construction.

We have left to show that Γ_i is elementary.

・ロト ・日ト ・ヨト ・ヨト

Finishing the proof: C_i and Γ_i

Left to show each C_i satisfies the Periphery Proposition.

Want to use the same proof; already have no black leaves.

Sublemma:

There can be no four-valent black vertices (\bullet) on the cycle C_i .

The graph Γ_i is 2-connected by construction.

We have left to show that Γ_i is elementary.

Turn Γ_i into a knot diagram D_i ; it is nugatory and prime-like.

Apply earlier result. □

Partition Theorem $\hat{0}, \hat{1}$ Theorem Diameter Theorem

イロト イヨト イヨト イヨト

Proving the 0, 1 Theorem

$\widehat{0},\widehat{1}$ Theorem:

- Each C_i is $(0, \hat{1})$ -alternating.
- Furthermore, the leaves appear in both of these states.

Partition Theorem $\hat{0}, \hat{1}$ Theorem Diameter Theorem

Proving the 0, 1 Theorem

$\widehat{0},\widehat{1}$ Theorem:

- Each C_i is $(0, \hat{1})$ -alternating.
- Furthermore, the leaves appear in both of these states.

Notation:

Decompose C_i into perfect matchings on the cycle subgraph: μ_i^0 that traverse clockwise from black to white and μ_i^1 that traverse clockwise from white to black.

イロト イヨト イヨト イヨト

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

・ロト ・日ト ・ヨト ・ヨト

Proving the 0, 1 Theorem

Proof:

Consider the union of μ_i^0 . The other case is similar.

Partition Theorem $\hat{0}, \hat{1}$ Theorem Diameter Theorem

・ロト ・日ト ・ヨト ・ヨト

Proving the 0, 1 Theorem

Proof:

Consider the union of μ_i^0 . The other case is similar.

To see this is $\widehat{0}$, enough to show cannot be counterclocked.

Partition Theorem $\hat{0}, \hat{1}$ Theorem Diameter Theorem

・ロト ・日ト ・ヨト ・ヨト

Proving the $0, \hat{1}$ Theorem

Proof:

Consider the union of μ_i^0 . The other case is similar.

To see this is $\widehat{0}$, enough to show cannot be counterclocked.

This can only occur when edges e_i and e_j

(from \bigcirc to \bullet on the boundary of the same square face *f*) belong to μ_i^0 .

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

・ロト ・日ト ・ヨト ・ヨト

Proving the 0, 1 Theorem

For e_i in $\widehat{0}$ to belong to C_i , it must go from \bullet to \bigcirc within Γ_i .

Partition Theorem **0**, **1** Theorem Diameter Theorem

イロト イボト イヨト イヨト

Proving the $0, \hat{1}$ Theorem

For e_i in $\widehat{0}$ to belong to C_i , it must go from \bullet to \bigcirc within Γ_i .

Thus if e_i belongs to C_i , then f must be outside of Γ_i .

Partition Theorem $\hat{0}, \hat{1}$ Theorem Diameter Theorem

イロト イボト イヨト イヨト

Proving the $0, \hat{1}$ Theorem

For e_i in $\widehat{0}$ to belong to C_i , it must go from \bullet to \bigcirc within Γ_i .

Thus if e_i belongs to C_i , then f must be outside of Γ_i .

If this holds for both e_i and e_j , then cycles C_i and C_j could be extended through *f* to create one cycle, a contradiction.

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

イロト イヨト イヨト イヨト

Proving the 0, 1 Theorem

For e_i in $\widehat{0}$ to belong to C_i , it must go from \bullet to \bigcirc within Γ_i .

Thus if e_i belongs to C_i , then f must be outside of Γ_i .

If this holds for both e_i and e_j , then cycles C_i and C_j could be extended through *f* to create one cycle, a contradiction.

If e_i is a leaf, the cycle C_i can be extended through f.

Partition Theorem $\hat{0}, \hat{1}$ Theorem Diameter Theorem

イロト イボト イヨト イヨト

Proving the 0, 1 Theorem

For e_i in $\widehat{0}$ to belong to C_i , it must go from \bullet to \bigcirc within Γ_i .

Thus if e_i belongs to C_i , then f must be outside of Γ_i .

If this holds for both e_i and e_j , then cycles C_i and C_j could be extended through *f* to create one cycle, a contradiction.

If e_i is a leaf, the cycle C_i can be extended through f.

If both e_i and e_j are leaves, f becomes a new cycle C_{ij} .

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

Proving the Diameter Theorem

Diameter Theorem:

Consider the balanced overlaid Tait graph Γ , and

let $s(C_i)$ be the number of square faces within interior graph Γ_i . Then

$$\sum_i s(C_i) = h$$

・ロト ・日ト ・ヨト ・ヨト

gives the height of the clock lattice.

Partition Theorem 0, 1 Theorem Diameter Theorem

・ロト ・日ト ・ヨト ・ヨト

Proving the Diameter Theorem

Proof:

Since G is connected, $s(C_i) \neq 0$.

Partition Theorem 0, 1 Theorem Diameter Theorem

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Proving the Diameter Theorem

Proof:

Since G is connected, $s(C_i) \neq 0$.

Proceed by induction on k, the number of cycles.

Partition Theorem 0, 1 Theorem Diameter Theorem

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Proving the Diameter Theorem

Proof:

Since G is connected, $s(C_i) \neq 0$.

Proceed by induction on k, the number of cycles.

Base Case: Simply connected region.

Partition Theorem 0, 1 Theorem Diameter Theorem

Proving the Diameter Theorem

Proof:

Since G is connected, $s(C_i) \neq 0$.

Proceed by induction on k, the number of cycles.

Base Case: Simply connected region.

Use reduction moves to get rid of leaves and additional cycles.

ヘロト 人間 ト 人間 ト 人 同 ト

Partition Theorem 0, 1 Theorem Diameter Theorem

Proving the Diameter Theorem

Proof:

Since *G* is connected, $s(C_i) \neq 0$.

Proceed by induction on k, the number of cycles.

Base Case: Simply connected region.

Use reduction moves to get rid of leaves and additional cycles.

・ロト ・日ト ・日ト・日ト

Induction Step: Flipping a single annulus.

Partition Theorem 0, 1 Theorem Diameter Theorem

・ロト ・日ト ・日ト・日ト

3

Base Case: Simply connected region

Lemma:

The lattice height for exactly one connected cycle C is s(C).

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

・ロト ・日ト ・ヨト ・ヨト

Base Case: Simply connected region

Lemma:

The lattice height for exactly one connected cycle C is s(C).

Proof:

Induct on # squares s(C); base case is a single square.

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

ヘロト 人間 ト 人間 ト 人 同 ト

Base Case: Simply connected region

Lemma:

The lattice height for exactly one connected cycle C is s(C).

Proof:

Induct on # squares s(C); base case is a single square.

Let s_1 be a square sharing at least one edge with *C*.

This produces a new cycle $C' = C \triangle s_1$ within *C*.

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

Base Case: Simply connected region

Lemma:

The lattice height for exactly one connected cycle C is s(C).

Proof:

Induct on # squares s(C); base case is a single square.

Let s_1 be a square sharing at least one edge with *C*.

This produces a new cycle $C' = C \triangle s_1$ within *C*.

イロト イボト イヨト イヨト

Partition Theorem 0, 1 Theorem Diameter Theorem

・ロト ・日ト ・日ト・日ト

Base Case: Simply connected region

 s_1 must share consecutive edges for C' to be connected.

・ロト ・日ト ・ヨト ・ヨト

Base Case: Simply connected region

 s_1 must share consecutive edges for C' to be connected.

It cannot share all four edges with C.

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

イロト イポト イヨト イヨト

Base Case: Simply connected region

 s_1 must share consecutive edges for C' to be connected.

It cannot share all four edges with C.

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

Base Case: Simply connected region

 s_1 must share consecutive edges for C' to be connected.

It cannot share all four edges with C.

イロト イヨト イヨト

Partition Theorem 0, 1 Theorem Diameter Theorem

Base Case: Simply connected region

 s_1 must share consecutive edges for C' to be connected.

It cannot share all four edges with C.

Moshe Cohen, Mina Teicher (Bar-Ilan University, Israel)

The height of Kauffman's clock lattice

 Translating a knot into a graph
 Partition Theorem

 Properties of Γ and the graph \mathcal{G} of perfect matchings
 $\widehat{0}, \widehat{1}$ Theorem

 Diameter Theorem
 Diameter Theorem

Reduction Moves

Simply Connected Reduction Move:

Removes a simply connected region following the proof above.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

 Translating a knot into a graph
 Partition Theorem

 Properties of Γ and the graph G of perfect matchings
 0, 1 Theorem

 Proofs
 Diameter Theorem

Reduction Moves

Simply Connected Reduction Move:

Removes a simply connected region following the proof above.

Leaf Reduction Move:

Moshe Cohen, Mina Teicher (Bar-Ilan University, Israel)

The height of Kauffman's clock lattice

Partition Theorem 0, 1 Theorem Diameter Theorem

ヘロト 人間 ト 人間 ト 人間 トー

3

Extra Cycle Reduction Moves

Remove additional cycles (beyond C_i) within a single C_{i-1} .

Partition Theorem 0, 1 Theorem Diameter Theorem

Extra Cycle Reduction Moves

Remove additional cycles (beyond C_i) within a single C_{i-1} .

An *accordion* joins two disconnected cycles when C_{i-1} is deleted from Γ_{i-1} .

・ロト ・日ト ・日ト・日ト

Partition Theorem 0, 1 Theorem Diameter Theorem

Extra Cycle Reduction Moves

The height of Kauffman's clock lattice

Partition Theorem $\widehat{0}, \widehat{1}$ Theorem Diameter Theorem

Extra Cycle Reduction Moves

Remove additional cycles (beyond C_i) within a single C_{i-1} .

A *party hat* joins cycles separated by cutvertices when C_{i-1} is deleted from Γ_{i-1} .

・ロト ・日ト ・日ト・日ト

Partition Theorem 0, 1 Theorem Diameter Theorem

Extra Cycle Reduction Moves

Party Hat Reduction Move:

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

E

・ロト ・日ト ・ヨト ・ヨト

Induction Step: Flipping a single annulus

Induction Step Lemma:

Flipping all the square faces in $\Gamma_{i-1} \setminus \Gamma_i$ exactly once takes the local perfect matchings of μ_{i-1}^0 and μ_i^1 to those of μ_{i-1}^1 and μ_i^0 .
Induction Step: Flipping a single annulus

Induction Step Lemma:

Flipping all the square faces in $\Gamma_{i-1} \setminus \Gamma_i$ exactly once takes the local perfect matchings of μ_{i-1}^0 and μ_i^1 to those of μ_{i-1}^1 and μ_i^0 .

Proof:

 Translating a knot into a graph
 Partition Theorem

 Properties of Γ and the graph \mathcal{G} of perfect matchings
 $\widehat{0}, \widehat{1}$ Theorem

 Proofs
 Diameter Theorem

Conclusion

Questions:

What else can we learn from the structure of this graph?

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Translating a knot into a graphPartition TheoremProperties of Γ and the graph \mathcal{G} of perfect matchings $\widehat{0}, \widehat{1}$ TheoremProofsDiameter Theorem

Conclusion

Questions:

What else can we learn from the structure of this graph?

Conjecture:

The number of cycles is related to the *bridge number* of the diagram.

This is reinforced by work of Koseleff-Pecker on Chebyshev knots.

イロト イボト イヨト

 Translating a knot into a graph
 Partition Theorem

 Properties of Γ and the graph \mathcal{G} of perfect matchings
 $\widehat{0}, \widehat{1}$ Theorem

 Proofs
 Diameter Theorem

- Yukiko Abe, *The clock number of a knot*, arXiv:1103.0072, 2011.
- Moshe Cohen, Oliver T. Dasbach, and Heather M. Russell, A twisted dimer model for knots, Fund. Math. (2012), arXiv:1010.5228.
- Moshe Cohen, A determinant formula for the Jones polynomial of pretzel knots, J. Knot Theory Ramifications 21 (2012), no. 6, arXiv:1011.3661.
- Louis H. Kauffman, *Formal knot theory*, Mathematical Notes, vol. 30, Princeton University Press, Princeton, NJ, 1983.
- L. Lovász and M. D. Plummer, *Matching theory*, North-Holland Mathematics Studies, vol. 121, North-Holland Publishing Co., Amsterdam, 1986, Annals of Discrete Mathematics, 29.

イロト イポト イヨト イヨト