Kauffman's clock lattice as a graph of perfect matchings: a formula for its height

Moshe Cohen
www.math.biu.ac.il/~cohenm10/
Joint with Mina Teicher

Bar-Ilan University, Israel
Brandeis University, September 20th, 2012

Outline

(9) Translating a knot into a graph

- Background from Knot Theory
- The balanced overlaid Tait graph Г
- An example and applications
(2) Properties of Γ and the graph \mathcal{G} of perfect matchings
- The Periphery Proposition and other properties of Γ
- The graph \mathcal{G} as Kauffman's clock lattice L
- Main Results
(3) Proofs
- Partition Theorem
- $\widehat{0}, \widehat{1}$ Theorem
- Diameter Theorem

Combinatorics and Topology

Motivation and Goals:

What does the combinatorics of a knot tell us about its topology?

Combinatorics and Topology

Motivation and Goals:

What does the combinatorics of a knot tell us about its topology?
Can topological properties be rephrased in terms of combinatorial properties?

Combinatorics and Topology

Motivation and Goals:

What does the combinatorics of a knot tell us about its topology?
Can topological properties be rephrased in terms of combinatorial properties?

Translate a knot into a simple combinatorial object, employ combinatorial techniques, and translate back.

Background from Knot Theory

A knot K is S^{1} embedded in S^{3}.

Background from Knot Theory

A knot K is S^{1} embedded in S^{3}.
A knot diagram D is the projection of the knot onto \mathbb{R}^{2} with under- and over-crossing information.

Background from Knot Theory

A knot K is S^{1} embedded in S^{3}.
A knot diagram D is the projection of the knot onto \mathbb{R}^{2} with under- and over-crossing information.

Theorem: (Reidemeister 1926)
Two diagrams represent the same knot \Leftrightarrow there is a sequence of Reidemeister moves taking one to the other.

Background from Knot Theory

Background from Knot Theory

Background from Knot Theory

RMI:

$$
\leftrightarrow
$$

RMII:

\leftrightarrow

RMIII:

Background from Knot Theory

A knot invariant is an evaluation on a knot diagram that is constant under each of the three Reidemeister moves.

Background from Knot Theory

The crossing here is an example of a nugatory crossing.

Background from Knot Theory

RMI:

The crossing here is an example of a nugatory crossing.

Definition:

A crossing is called nugatory if there is a circle meeting the diagram transversely at the crossing but at no other point.

Background from Knot Theory

RMI:

The crossing here is an example of a nugatory crossing.

Definition:

A crossing is called nugatory if there is a circle meeting the diagram transversely at the crossing but at no other point.

We assume our knot diagrams have no nugatory crossings.

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or -1 .

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or -1 .

Checkerboard color the regions of a knot diagram D.

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or -1 .

Checkerboard color the regions of a knot diagram D.

Definition:

The signed Tait graph G associated with D has
$V(G)=\{$ colored regions $\}$ and $E(G)=\{$ crossings of $D\}$.
positive

negative

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or -1 .

Checkerboard color the regions of a knot diagram D.

Definition:

The signed Tait graph G associated with D has
$V(G)=\{$ colored regions $\}$ and $E(G)=\{$ crossings of $D\}$.
positive

negative

Note that the dual G^{*} comes from the uncolored regions.

Graphs from knots: the overlaid Tait graph $\widehat{\Gamma}$

Definition:

The overlaid Tait graph $\widehat{\Gamma}$ associated with D is bipartite with $V(\widehat{\Gamma})=\left[E(G) \cap E\left(G^{*}\right)\right] \sqcup\left[V(G) \sqcup V\left(G^{*}\right)\right]$ and
$E(\widehat{\Gamma})$ the half-edges of G and G^{*}.

Graphs from knots: the overlaid Tait graph $\widehat{\Gamma}$

Definition:

The overlaid Tait graph $\widehat{\Gamma}$ associated with D is bipartite with
$V(\widehat{\Gamma})=\left[E(G) \cap E\left(G^{*}\right)\right] \sqcup\left[V(G) \sqcup V\left(G^{*}\right)\right]$ and
$E(\widehat{\Gamma})$ the half-edges of G and G^{*}.

Each face in the overlaid Tait graph $\widehat{\Gamma}$ is a square.

Graphs from knots: the balanced overlaid Tait graph Γ

Definition:

The balanced overlaid Tait graph Γ associated with D is obtained from $\widehat{\Gamma}$ by removing two vertices from the larger set that lie on the same face:

Graphs from knots: the balanced overlaid Tait graph Γ

Definition:

The balanced overlaid Tait graph Γ associated with D is obtained from $\widehat{\Gamma}$ by removing two vertices from the larger set that lie on the same face:

"Balanced" means the two vertex sets are the same size.

Graphs from knots: the signed Tait graph G

The knot 8_{19} as the ($-2,3,3$)-pretzel knot,

Graphs from knots: the signed Tait graph G

a checkerboard coloring,

Graphs from knots: the signed Tait graph G

the corresponding signed Tait graph G,

Graphs from knots: the signed Tait graph G

the dual signed Tait graph G^{*},

Graphs from knots: the balanced overlaid Tait graph Γ

the overlaid Tait graph $\widehat{\Gamma}$ (all faces are square),

Graphs from knots: the balanced overlaid Tait graph Γ

and the balanced overlaid Tait graph Γ.

Graphs from knots: the balanced overlaid Tait graph Γ

Remarks:

This graph can be weighted to carry crossing information.

Graphs from knots: the balanced overlaid Tait graph Γ

Remarks:

This graph can be weighted to carry crossing information.

Further weightings on this graph have been used to obtain dimer (perfect matching) models for

Graphs from knots: the balanced overlaid Tait graph Γ

Remarks:

This graph can be weighted to carry crossing information.

Further weightings on this graph have been used to obtain dimer (perfect matching) models for
\diamond the Alexander polynomial $\Delta_{K}(t)$ of a knot K (C-Dasbach-Russell [CDR12])

Graphs from knots: the balanced overlaid Tait graph Γ

Remarks:

This graph can be weighted to carry crossing information.

Further weightings on this graph have been used to obtain dimer (perfect matching) models for
\diamond the Alexander polynomial $\Delta_{K}(t)$ of a knot K (C-Dasbach-Russell [CDR12])
\diamond the Jones polynomial of a pretzel knot (C- [Coh12])

Graphs from knots: the balanced overlaid Tait graph Γ

Remarks:

This graph can be weighted to carry crossing information.
Further weightings on this graph have been used to obtain dimer (perfect matching) models for
\diamond the Alexander polynomial $\Delta_{K}(t)$ of a knot K (C-Dasbach-Russell [CDR12])
\diamond the Jones polynomial of a pretzel knot (C- [Coh12])
\diamond (using p-lifts) the twisted Alexander polynomial of a knot together with a representation (C-Dasbach-Russell [CDR12])

Graphs from knots: the balanced overlaid Tait graph Γ

Applications:

\diamond (Huggett-Mofatt-Virdee) $\widehat{\Gamma}$ to study ribbon graphs from cables
\diamond (Kravchenko-Polyak) 「 obtained on a torus and cluster algebras
\diamond (Kidwell-Luse) "One-spinners" generalizing Abe’s clock number.

Graphs from knots: the balanced overlaid Tait graph Γ

Applications:

\diamond (Huggett-Mofatt-Virdee) $\widehat{\Gamma}$ to study ribbon graphs from cables
\diamond (Kravchenko-Polyak) 「 obtained on a torus and cluster algebras
\diamond (Kidwell-Luse) "One-spinners" generalizing Abe’s clock number.
\diamond (Koseleff-Pecker) Every knot has a projection that is Chebyshev.
Thus every knot has a 「 which is a grid graph.
\diamond Perfect matchings of $\Gamma \leftrightarrow$ discrete Morse functions of a $2-c x$ of S^{2}.

Graphs from knots: the balanced overlaid Tait graph Γ

Applications:

\diamond (Huggett-Mofatt-Virdee) $\widehat{\Gamma}$ to study ribbon graphs from cables
\diamond (Kravchenko-Polyak) 「 obtained on a torus and cluster algebras
\diamond (Kidwell-Luse) "One-spinners" generalizing Abe’s clock number.
\diamond (Koseleff-Pecker) Every knot has a projection that is Chebyshev.
Thus every knot has a 「 which is a grid graph.
\diamond Perfect matchings of $\Gamma \leftrightarrow$ discrete Morse functions of a 2-cx of S^{2}.
\diamond (Future work) Perfect matching models for knot homologies.

The Periphery Proposition

The periphery is the cycle on the outer infinite face.

The Periphery Proposition

The periphery is the cycle on the outer infinite face.

Basic properties of Γ (by construction):

\diamond The graph is plane bipartite,

The Periphery Proposition

The periphery is the cycle on the outer infinite face.

Basic properties of Γ (by construction):

\diamond The graph is plane bipartite,
\diamond all faces are squares (except the outer face),

The Periphery Proposition

The periphery is the cycle on the outer infinite face.

Basic properties of Γ (by construction):

\diamond The graph is plane bipartite,
\diamond all faces are squares (except the outer face),
\diamond all black vertices (\bullet) not on the periphery are 4-valent, and

The Periphery Proposition

The periphery is the cycle on the outer infinite face.

Basic properties of Γ (by construction):

\diamond The graph is plane bipartite,
\diamond all faces are squares (except the outer face),
\diamond all black vertices (\bullet) not on the periphery are 4 -valent, and

Proposition:

The balanced overlaid Tait graph Γ for a diagram with no nugatory crossings satisfies the Periphery Proposition.

The Periphery Proposition

The Periphery Proposition:

\diamond Two of the black vertices (©) on the periphery have valence 2 and the rest have valence 3 .

The Periphery Proposition

The Periphery Proposition:

\diamond Two of the black vertices ($)$ on the periphery have valence 2
\diamond and the rest have valence 3 .

Proof:

Let n_{i} be the number of black vertices (\bullet) of valence i.

The Periphery Proposition

The Periphery Proposition:

\diamond Two of the black vertices ($)$ on the periphery have valence 2
\diamond and the rest have valence 3 .

Proof:

Let n_{i} be the number of black vertices (\bullet) of valence i.
Lemma: $n_{1}=0$.
Balanced $\Rightarrow|V|=2\left(n_{2}+n_{3}+n_{4}\right)$.

The Periphery Proposition

The Periphery Proposition:

\diamond Two of the black vertices ($)$ on the periphery have valence 2
\diamond and the rest have valence 3 .

Proof:

Let n_{i} be the number of black vertices (\bullet) of valence i.
Lemma: $n_{1}=0$.
Balanced $\Rightarrow|V|=2\left(n_{2}+n_{3}+n_{4}\right)$.
$|E|=2 n_{2}+3 n_{3}+4 n_{4}$.

$$
\text { Plane } \Rightarrow|F|=2+n_{3}+2 n_{4} .
$$

The Periphery Proposition

The Periphery Proposition:

\diamond Two of the black vertices ($)$ on the periphery have valence 2
\diamond and the rest have valence 3 .

Proof:

Let n_{i} be the number of black vertices (\bullet) of valence i.

Lemma: $n_{1}=0$.
$|E|=2 n_{2}+3 n_{3}+4 n_{4}$.
Lemma: $n_{4}=0$ on periphery.

Balanced $\Rightarrow|V|=2\left(n_{2}+n_{3}+n_{4}\right)$.
Plane $\Rightarrow|F|=2+n_{3}+2 n_{4}$.
Periphery of length $2\left(n_{2}+n_{3}\right)$.

The Periphery Proposition

The Periphery Proposition:

\diamond Two of the black vertices ($)$ on the periphery have valence 2
\diamond and the rest have valence 3 .

Proof:

Let n_{i} be the number of black vertices () of valence i.
Lemma: $n_{1}=0$.
$|E|=2 n_{2}+3 n_{3}+4 n_{4}$.
Lemma: $n_{4}=0$ on periphery.
$2|E|=4(|F|-1)+(1)\left(2\left(n_{2}+n_{3}\right)\right)$
$\Rightarrow n_{2}=2$.
Periphery of length $2\left(n_{2}+n_{3}\right)$.

Properties of the balanced overlaid Tait graph Γ

A universe is a knot diagram with no crossing information.

Properties of the balanced overlaid Tait graph Γ

A universe is a knot diagram with no crossing information.

Proposition:

A balanced overlaid Tait graph Γ gives a unique universe.

Properties of the balanced overlaid Tait graph Γ

A universe is a knot diagram with no crossing information.

Proposition:

A balanced overlaid Tait graph Γ gives a unique universe.
Proof:

Properties of the balanced overlaid Tait graph Γ

A universe is a knot diagram with no crossing information.

Proposition:

A balanced overlaid Tait graph Γ gives a unique universe.

Proof:

Connectivity

Remark:

The following restrictive notion is used here for the proof, but a technique from some previous group work achieves full generality.

Connectivity

Remark:

The following restrictive notion is used here for the proof, but a technique from some previous group work achieves full generality.

Definition:

A knot K is prime if when $K=K_{1} \# K_{2}$, some $K_{i}=$ unknot. A knot diagram D is prime-like if when $D=D_{1} \# D_{2}$, some D_{i} has no crossings.

「 is elementary

Definition:

An edge of a graph is allowed if it lies in some perfect matching of the graph and forbidden otherwise. A graph is elementary if its allowed edges form a connected subgraph of the graph.

「 is elementary

Definition:

An edge of a graph is allowed if it lies in some perfect matching of the graph and forbidden otherwise. A graph is elementary if its allowed edges form a connected subgraph of the graph.

Theorem: (Lovasz-Plummer 1986, Theorem 4.1.1) [LP86]
A bipartite graph is elementary if and only if it is connected and every edge is allowed.

「 is elementary

Definition:

An edge of a graph is allowed if it lies in some perfect matching of the graph and forbidden otherwise. A graph is elementary if its allowed edges form a connected subgraph of the graph.

Theorem: (Lovasz-Plummer 1986, Theorem 4.1.1) [LP86]
A bipartite graph is elementary if and only if it is connected and every edge is allowed.

Theorem:

The balanced overlaid Tait graph Γ for a prime-like knot diagram with no nugatory crossings is an elementary graph.

「 is 2-connected

Definition:

A graph Γ is said to be n-extendable if it is connected, has a set of n independent lines, and every set of n independent lines in Γ extends to (i.e. is a subset of) a perfect matching of Γ.

「 is 2-connected

Definition:

A graph Γ is said to be n-extendable if it is connected, has a set of n independent lines, and every set of n independent lines in Γ extends to (i.e. is a subset of) a perfect matching of Γ.

By above, an elementary bipartite graph is 1-extendable.

「 is 2-connected

Definition:

A graph Γ is said to be n-extendable if it is connected, has a set of n independent lines, and every set of n independent lines in Γ extends to (i.e. is a subset of) a perfect matching of Γ.

By above, an elementary bipartite graph is 1-extendable.
Lemma: (Plummer 1980, Lemma 3.1)
Every 1 -extendable graph (that is not K_{2}) is 2-connected.

「 is 2-connected

Definition:

A graph Γ is said to be n-extendable if it is connected, has a set of n independent lines, and every set of n independent lines in Γ extends to (i.e. is a subset of) a perfect matching of Γ.

By above, an elementary bipartite graph is 1-extendable.
Lemma: (Plummer 1980, Lemma 3.1)
Every 1-extendable graph (that is not K_{2}) is 2-connected.

Proposition:

The balanced overlaid Tait graph Γ for a prime-like knot diagram with no nugatory crossings is 2 -connected.

The graph \mathcal{G} of perfect matchings

Now consider the graph \mathcal{G} of perfect matchings of Γ.

The graph \mathcal{G} of perfect matchings

Now consider the graph \mathcal{G} of perfect matchings of Γ.

Each vertex of \mathcal{G} is a perfect matching of Γ.
Each edge of \mathcal{G} corresponds with a (bipartite) flip move.

The graph \mathcal{G} of perfect matchings

Now consider the graph \mathcal{G} of perfect matchings of Γ.

Each vertex of \mathcal{G} is a perfect matching of Γ.
Each edge of \mathcal{G} corresponds with a (bipartite) flip move.
Kauffman studied a similar object to obtain $\Delta_{K}(t)$:

Kauffman [Kau83]	C-Teicher
universe U	balanced overlaid Tait graph Γ state clock move
perfect matching of Γ (bipartite) flip move	

The graph \mathcal{G} of perfect matchings

Kauffman [Kau83]	C-Teicher
universe U	balanced overlaid Tait graph Γ state clock move
perfect matching of Γ (bipartite) flip move	

An example of \mathcal{G} from Abe

The graph \mathcal{G} of perfect matchings

Theorem: (Kauffman, Clock Theorem 2.5.) [Kau83]
Let U be a universe and δ the set of states of U for a given choice of adjacent fixed stars.

The graph \mathcal{G} of perfect matchings

Theorem: (Kauffman, Clock Theorem 2.5.) [Kau83]
Let U be a universe and δ the set of states of U for a given choice of adjacent fixed stars.

Then δ has a unique clocked state and a unique counterclocked state.

The graph \mathcal{G} of perfect matchings

Theorem: (Kauffman, Clock Theorem 2.5.) [Kau83]
Let U be a universe and δ the set of states of U for a given choice of adjacent fixed stars.

Then δ has a unique clocked state and a unique counterclocked state.

Any state in δ can be reached from the clocked (counterclocked) state by a series of clockwise (counterclockwise) moves.

The graph \mathcal{G} of perfect matchings

Theorem: (Kauffman, Clock Theorem 2.5.) [Kau83]
Let U be a universe and δ the set of states of U for a given choice of adjacent fixed stars.

Then δ has a unique clocked state and a unique counterclocked state.

Any state in δ can be reached from the clocked (counterclocked) state by a series of clockwise (counterclockwise) moves.

Hence any two states in δ are connected by a series of state transpositions.

The graph \mathcal{G} of perfect matchings

Kauffman [Kau83]	C-Teicher
Clock Lattice L	graph of perfect matchings \mathcal{G}

The graph \mathcal{G} of perfect matchings

Kauffman [Kau83]	C-Teicher
Clock Lattice L	graph of perfect matchings \mathcal{G}

Notation:

Denote the unique minimum by $\widehat{0}$ and the unique maxium by $\widehat{1}$ of the connected lattice L. Let h be the height of this lattice.

The graph \mathcal{G} of perfect matchings

Kauffman [Kau83]	C-Teicher
Clock Lattice L	graph of perfect matchings \mathcal{G}

Notation:
Denote the unique minimum by $\widehat{0}$ and the unique maxium by $\widehat{1}$ of the connected lattice L. Let h be the height of this lattice.

The diameter of a graph is the maximum of the shortest distance between any two vertices taken over all pairs of vertices.

The graph \mathcal{G} of perfect matchings

Kauffman [Kau83]	C-Teicher
Clock Lattice L	graph of perfect matchings \mathcal{G}

Notation:

Denote the unique minimum by $\widehat{0}$ and the unique maxium by $\widehat{1}$ of the connected lattice L. Let h be the height of this lattice.

The diameter of a graph is the maximum of the shortest distance between any two vertices taken over all pairs of vertices.

Proposition:

The height h of the clock lattice L is the diameter of the graph \mathcal{G}.

The graph \mathcal{G} of perfect matchings

Proposition:

The height h of the clock lattice L is the diameter of the graph \mathcal{G}.

The graph \mathcal{G} of perfect matchings

Proposition:

The height h of the clock lattice L is the diameter of the graph \mathcal{G}.

Proof:

$d(\widehat{0}, \widehat{1})=h$, so enough to show no larger distance.

The graph \mathcal{G} of perfect matchings

Proposition:

The height h of the clock lattice L is the diameter of the graph \mathcal{G}.

Proof:

$d(\widehat{0}, \widehat{1})=h$, so enough to show no larger distance.

$\widehat{0}$

The graph \mathcal{G} of perfect matchings

Definition:

Let $h+1$ be the clock number of the starred diagram $p(D)$.

The graph \mathcal{G} of perfect matchings

Definition:

Let $h+1$ be the clock number of the starred diagram $p(D)$.
Abe defines a knot invariant by taking the minimum of $p(D)$ over all starred diagrams of a knot K, calling this the clock number $p(K)$ of the knot K. [Abe11]

The graph \mathcal{G} of perfect matchings

Definition:

Let $h+1$ be the clock number of the starred diagram $p(D)$.
Abe defines a knot invariant by taking the minimum of $p(D)$ over all starred diagrams of a knot K, calling this the clock number $p(K)$ of the knot K. [Abe11]

Theorem: (Abe 2011) [Abe11]
$p(K) \geq c(K)$, the crossing number of K with equality if and only if K is a 2-bridge knot.

Partitioning the vertices of Γ

Main construction idea:

Partition the vertices of the balanced overlaid Tait graph Γ into leaves $\ell \in \mathcal{L}$ and cycles C_{i}.

Partitioning the vertices of Γ

Main construction idea:

Partition the vertices of the balanced overlaid Tait graph Γ into leaves $\ell \in \mathcal{L}$ and cycles C_{i}.

Notation:
Denote by Γ_{i} the interior graph within and including cycle C_{i}.

Partitioning the vertices of Γ

Main construction idea:

Partition the vertices of the balanced overlaid Tait graph Γ into leaves $\ell \in \mathcal{L}$ and cycles C_{i}.

Notation:

Denote by Γ_{i} the interior graph within and including cycle C_{i}.

Remark:

These cycles C_{i} emerge when the symmetric difference is taken of $\widehat{0}$ and $\widehat{1}$ in Kauffman's clock lattice L !

Partitioning the vertices of Γ

The clocked and counterclocked states of a diagram for K11n157.

Partitioning the vertices of Γ

The superposition of these two states of a diagram for K11n157.

Partitioning the vertices of Γ

Partition Theorem:

Consider the balanced overlaid Tait graph 「
for a prime-like knot diagram with no nugatory crossings. Then the vertices can be partitioned into leaves $\ell \in \mathcal{L}$ and cycles C_{i}, where each cycle C_{i} satisfies the Periphery Proposition and where each interior graph Γ_{i} is elementary and 2-connected.

Partitioning the vertices of Γ

Definition:

A cycle/path is $\left(\mu_{1}, \mu_{2}\right)$-alternating if the edges alternate between the two matchings μ_{1} and μ_{2}.

Partitioning the vertices of Γ

Definition:

A cycle/path is $\left(\mu_{1}, \mu_{2}\right)$-alternating if the edges alternate between the two matchings μ_{1} and μ_{2}.

0,1 Theorem:

Each C_{i} is $(\widehat{0}, \widehat{1})$-alternating.
Furthermore, the leaves appear in both of these states.

Properties of the balanced overlaid Tait graph Γ

Diameter Theorem:

Consider the balanced overlaid Tait graph Γ, and
let $s\left(C_{i}\right)$ be the number of square faces within interior graph Γ_{i}.
Then

$$
\sum_{i} s\left(C_{i}\right)=h
$$

gives the height of the clock lattice.

An example using the diameter theorem

The height of the lattice is $15+5=20$.

Proof of the Partition Theorem

Partition Theorem:

Consider the balanced overlaid Tait graph 「
for a prime-like knot diagram with no nugatory crossings. Then
the vertices can be partitioned into leaves $\ell \in \mathcal{L}$ and cycles C_{i}, where each cycle C_{i} satisfies the Periphery Proposition and where each interior graph Γ_{i} is elementary and 2-connected.

Proof of the Partition Theorem

Base Case:

The periphery $C=C_{1}$ on the infinite face already satisfies the Periphery Proposition, and the interior graph $\Gamma=\Gamma_{1}$ is both elementary and 2-connected.

Proof of the Partition Theorem

Base Case:

The periphery $C=C_{1}$ on the infinite face already satisfies the Periphery Proposition, and the interior graph $\Gamma=\Gamma_{1}$ is both elementary and 2-connected.

Construction of C_{i} :

Delete all vertices of C_{i-1} from the graph Γ_{i-1}
to obtain a new graph Γ_{i}^{\prime}, and consider its periphery C_{i}^{\prime}.

Proof of the Partition Theorem

Base Case:

The periphery $C=C_{1}$ on the infinite face already satisfies the Periphery Proposition, and the interior graph $\Gamma=\Gamma_{1}$ is both elementary and 2-connected.

Construction of C_{i} :

Delete all vertices of C_{i-1} from the graph Γ_{i-1}
to obtain a new graph Γ_{i}^{\prime}, and consider its periphery C_{i}^{\prime}.
If C_{i}^{\prime} has several components, treat each $C_{i}^{\prime}, C_{i+1}^{\prime}, \ldots$ separately.

Proof of the Partition Theorem

Base Case:

The periphery $C=C_{1}$ on the infinite face already satisfies the Periphery Proposition, and the interior graph $\Gamma=\Gamma_{1}$ is both elementary and 2-connected.

Construction of C_{i} :

Delete all vertices of C_{i-1} from the graph Γ_{i-1}
to obtain a new graph Γ_{i}^{\prime}, and consider its periphery C_{i}^{\prime}.
If C_{i}^{\prime} has several components, treat each $C_{i}^{\prime}, C_{i+1}^{\prime}, \ldots$ separately.
If C_{i}^{\prime} is a single cycle with no cutvertices, $C_{i}^{\prime}=C_{i}$ and $\Gamma_{i}^{\prime}=\Gamma_{i}$.

Proof of the Partition Theorem

Otherwise there is some cutvertex v. Perform these operations:

Proof of the Partition Theorem

Otherwise there is some cutvertex v. Perform these operations:
"Pruning" leaves:
Suppose v is incident with a leaf. Delete all edges incident with
v. Collect all of the leaves pruned in the set \mathcal{L}_{i-1}.

Proof of the Partition Theorem

Otherwise there is some cutvertex v. Perform these operations:
"Pruning" leaves:
Suppose v is incident with a leaf. Delete all edges incident with v. Collect all of the leaves pruned in the set \mathcal{L}_{i-1}.
"Breaking" cutvertices:
Suppose the deletion of v results in several components, each of which contains a cycle (with v).

Also suppose there is exactly one component $C^{\text {odd }}$ that has an odd number of vertices (not including v).

Delete all edges incident with v except for those in $C^{\text {odd }}$.

Need to show there is exactly one odd component

Definition:

A face of a 2-connected plane bipartite graph is called resonant if its boundary is a μ-alternating cycle w.r.t. some μ.

Need to show there is exactly one odd component

Definition:

A face of a 2-connected plane bipartite graph is called resonant if its boundary is a μ-alternating cycle w.r.t. some μ.

Theorem: (Zhang-Zhang 2000)
Every face in a plane bipartite G is resonant $\Leftrightarrow G$ is elementary.

Need to show there is exactly one odd component

Definition:

A face of a 2-connected plane bipartite graph is called resonant if its boundary is a μ-alternating cycle w.r.t. some μ.

Theorem: (Zhang-Zhang 2000)
Every face in a plane bipartite G is resonant $\Leftrightarrow G$ is elementary.

Theorem: (Tutte 1947)
A graph G has a perfect matching \Leftrightarrow the number of odd components of $G-S$ is $|S|$ for all $S \subset V$.

Need to show there is exactly one odd component

Lemma:

After deleting v, there is exactly one odd component.

Need to show there is exactly one odd component

Lemma:

After deleting v, there is exactly one odd component.

Proof:

Γ_{i-1} is elementary \Rightarrow periphery C_{i-1} is μ-alternating for some μ.

Need to show there is exactly one odd component

Lemma:

After deleting v, there is exactly one odd component.

Proof:

Γ_{i-1} is elementary \Rightarrow periphery C_{i-1} is μ-alternating for some μ. μ includes leaves between C_{i-1} and any interior cycles.

Need to show there is exactly one odd component

Lemma:

After deleting v, there is exactly one odd component.

Proof:

Γ_{i-1} is elementary \Rightarrow periphery C_{i-1} is μ-alternating for some μ. μ includes leaves between C_{i-1} and any interior cycles. μ restricts to the remaining graph (G) with $S=\{v\}$, and so there is exactly one odd component.

Finishing the proof: C_{i} and Γ_{i}

Left to show each C_{i} satisfies the Periphery Proposition.

Finishing the proof: C_{i} and Γ_{i}

Left to show each C_{i} satisfies the Periphery Proposition.
Want to use the same proof; already have no black leaves.

Finishing the proof: C_{i} and Γ_{i}

Left to show each C_{i} satisfies the Periphery Proposition.
Want to use the same proof; already have no black leaves.

Sublemma:

There can be no four-valent black vertices (\bullet) on the cycle C_{i}.

Finishing the proof: C_{i} and Γ_{i}

Left to show each C_{i} satisfies the Periphery Proposition.
Want to use the same proof; already have no black leaves.

Sublemma:

There can be no four-valent black vertices () on the cycle C_{i}.

The graph Γ_{i} is 2-connected by construction.

Finishing the proof: C_{i} and Γ_{i}

Left to show each C_{i} satisfies the Periphery Proposition.
Want to use the same proof; already have no black leaves.

Sublemma:

There can be no four-valent black vertices () on the cycle C_{i}.

The graph Γ_{i} is 2-connected by construction.
We have left to show that Γ_{i} is elementary.

Finishing the proof: C_{i} and Γ_{i}

Left to show each C_{i} satisfies the Periphery Proposition.
Want to use the same proof; already have no black leaves.

Sublemma:

There can be no four-valent black vertices (\bullet) on the cycle C_{i}.

The graph Γ_{i} is 2-connected by construction.
We have left to show that Γ_{i} is elementary.
Turn Γ_{i} into a knot diagram D_{i}; it is nugatory and prime-like.
Apply earlier result.

Proving the $\widehat{0}, \widehat{1}$ Theorem

$\widehat{0}, 1$ Theorem:
Each C_{i} is $\left.\widehat{0}, \widehat{1}\right)$-alternating.
Furthermore, the leaves appear in both of these states.

Proving the $\widehat{0}, \widehat{1}$ Theorem

$\widehat{0}, \widehat{1}$ Theorem:
Each C_{i} is $(\widehat{0}, \widehat{1})$-alternating.
Furthermore, the leaves appear in both of these states.

Notation:

Decompose C_{i} into perfect matchings on the cycle subgraph:
μ_{i}^{0} that traverse clockwise from black to white and μ_{i}^{1} that traverse clockwise from white to black.

Proving the $\widehat{0,1}$ Theorem

Proof:

Consider the union of μ_{i}^{0}. The other case is similar.

Proving the $\widehat{0}, \widehat{1}$ Theorem

Proof:

Consider the union of μ_{i}^{0}. The other case is similar.
To see this is $\widehat{0}$, enough to show cannot be counterclocked.

Proving the $\widehat{0}, \widehat{1}$ Theorem

Proof:

Consider the union of μ_{i}^{0}. The other case is similar.
To see this is $\widehat{0}$, enough to show cannot be counterclocked.
This can only occur when edges e_{i} and e_{j}
(from \bigcirc to \bullet on the boundary of the same square face f)
belong to μ_{i}^{0}.

Proving the $\widehat{0}, \widehat{1}$ Theorem

For e_{i} in $\widehat{0}$ to belong to C_{i}, it must go from \bullet to \bigcirc within Γ_{i}.

Proving the $\widehat{0}, \widehat{1}$ Theorem

For e_{i} in $\widehat{0}$ to belong to C_{i}, it must go from \bullet to O within Γ_{i}.
Thus if e_{i} belongs to C_{i}, then f must be outside of Γ_{i}.

Proving the $\widehat{0}, \widehat{1}$ Theorem

For e_{i} in $\widehat{0}$ to belong to C_{i}, it must go from \bullet to O within Γ_{i}.
Thus if e_{i} belongs to C_{i}, then f must be outside of Γ_{i}.
If this holds for both e_{i} and e_{j}, then cycles C_{i} and C_{j} could be extended through f to create one cycle, a contradiction.

Proving the $\widehat{0}, \widehat{1}$ Theorem

For e_{i} in $\widehat{0}$ to belong to C_{i}, it must go from \bullet to O within Γ_{i}.
Thus if e_{i} belongs to C_{i}, then f must be outside of Γ_{i}.
If this holds for both e_{i} and e_{j}, then cycles C_{i} and C_{j} could be extended through f to create one cycle, a contradiction.

If e_{j} is a leaf, the cycle C_{i} can be extended through f.

Proving the $\widehat{0}, \widehat{1}$ Theorem

For e_{i} in $\widehat{0}$ to belong to C_{i}, it must go from \bullet to O within Γ_{i}.
Thus if e_{i} belongs to C_{i}, then f must be outside of Γ_{i}.
If this holds for both e_{i} and e_{j}, then cycles C_{i} and C_{j} could be extended through f to create one cycle, a contradiction.

If e_{j} is a leaf, the cycle C_{i} can be extended through f.
If both e_{i} and e_{j} are leaves, f becomes a new cycle $C_{i j}$.

Proving the Diameter Theorem

Diameter Theorem:

Consider the balanced overlaid Tait graph Γ, and
let $s\left(C_{i}\right)$ be the number of square faces within interior graph Γ_{i}.
Then

$$
\sum_{i} s\left(C_{i}\right)=h
$$

gives the height of the clock lattice.

Proving the Diameter Theorem

Proof:

Since \mathcal{G} is connected, $s\left(C_{i}\right) \neq 0$.

Proving the Diameter Theorem

Proof:

Since \mathcal{G} is connected, $s\left(C_{i}\right) \neq 0$.
Proceed by induction on k, the number of cycles.

Proving the Diameter Theorem

Proof:

Since \mathcal{G} is connected, $s\left(C_{i}\right) \neq 0$.
Proceed by induction on k, the number of cycles.
Base Case: Simply connected region.

Proving the Diameter Theorem

Proof:

Since \mathcal{G} is connected, $s\left(C_{i}\right) \neq 0$.
Proceed by induction on k, the number of cycles.
Base Case: Simply connected region.
Use reduction moves to get rid of leaves and additional cycles.

Proving the Diameter Theorem

Proof:
Since \mathcal{G} is connected, $s\left(C_{i}\right) \neq 0$.
Proceed by induction on k, the number of cycles.
Base Case: Simply connected region.
Use reduction moves to get rid of leaves and additional cycles.
Induction Step: Flipping a single annulus.

Base Case: Simply connected region

Lemma:

The lattice height for exactly one connected cycle C is $s(C)$.

Base Case: Simply connected region

Lemma:

The lattice height for exactly one connected cycle C is $s(C)$.

Proof:

Induct on \# squares $s(C)$; base case is a single square.

Base Case: Simply connected region

Lemma:

The lattice height for exactly one connected cycle C is $s(C)$.

Proof:

Induct on \# squares $s(C)$; base case is a single square.
Let s_{1} be a square sharing at least one edge with C.
This produces a new cycle $C^{\prime}=C \Delta s_{1}$ within C.

Base Case: Simply connected region

Lemma:

The lattice height for exactly one connected cycle C is $s(C)$.

Proof:

Induct on \# squares $s(C)$; base case is a single square.
Let s_{1} be a square sharing at least one edge with C.
This produces a new cycle $C^{\prime}=C \Delta s_{1}$ within C.

Base Case: Simply connected region

s_{1} must share consecutive edges for C^{\prime} to be connected.

Base Case: Simply connected region

s_{1} must share consecutive edges for C^{\prime} to be connected.
It cannot share all four edges with C.

Base Case: Simply connected region

s_{1} must share consecutive edges for C^{\prime} to be connected.
It cannot share all four edges with C.

Base Case: Simply connected region

s_{1} must share consecutive edges for C^{\prime} to be connected.
It cannot share all four edges with C.

Base Case: Simply connected region

s_{1} must share consecutive edges for C^{\prime} to be connected.
It cannot share all four edges with C.

Reduction Moves

Simply Connected Reduction Move:

Removes a simply connected region following the proof above.

Reduction Moves

Simply Connected Reduction Move:

Removes a simply connected region following the proof above.
Leaf Reduction Move:

Extra Cycle Reduction Moves

Remove additional cycles (beyond C_{i}) within a single C_{i-1}.

Extra Cycle Reduction Moves

Remove additional cycles (beyond C_{i}) within a single C_{i-1}.
An accordion joins two disconnected cycles when C_{i-1} is deleted from Γ_{i-1}.

Extra Cycle Reduction Moves

Accordion Reduction Move:

\rightarrow

Extra Cycle Reduction Moves

Remove additional cycles (beyond C_{i}) within a single C_{i-1}.
A party hat joins cycles separated by cutvertices when C_{i-1} is deleted from Γ_{i-1}.

Extra Cycle Reduction Moves

Party Hat Reduction Move:

Induction Step: Flipping a single annulus

Induction Step Lemma:

Flipping all the square faces in $\Gamma_{i-1} \backslash \Gamma_{i}$ exactly once takes the local perfect matchings of μ_{i-1}^{0} and μ_{i}^{1} to those of μ_{i-1}^{1} and μ_{i}^{0}.

Induction Step: Flipping a single annulus

Induction Step Lemma:

Flipping all the square faces in $\Gamma_{i-1} \backslash \Gamma_{i}$ exactly once takes the local perfect matchings of μ_{i-1}^{0} and μ_{i}^{1} to those of μ_{i-1}^{1} and μ_{i}^{0}.

Proof:

Conclusion

Questions:

What else can we learn from the structure of this graph?

Conclusion

Questions:

What else can we learn from the structure of this graph?

Conjecture:

The number of cycles is related to the bridge number of the diagram.

This is reinforced by work of Koseleff-Pecker on Chebyshev knots.

Yukiko Abe，The clock number of a knot，arXiv：1103．0072， 2011.

Ti Moshe Cohen，Oliver T．Dasbach，and Heather M．Russell，A twisted dimer model for knots，Fund．Math．（2012）， arXiv：1010．5228．

囲 Moshe Cohen，A determinant formula for the Jones polynomial of pretzel knots，J．Knot Theory Ramifications 21 （2012），no．6， arXiv：1011．3661．

回 Louis H．Kauffman，Formal knot theory，Mathematical Notes， vol．30，Princeton University Press，Princeton，NJ， 1983.

围 L．Lovász and M．D．Plummer，Matching theory，North－Holland Mathematics Studies，vol．121，North－Holland Publishing Co．， Amsterdam，1986，Annals of Discrete Mathematics， 29.

