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Outline

1-3. Chebyshev knots T (a, b) and billiard table diagrams
• [Koseleff-Pecker ’11]

Present any k -bridge knot by T (a, b) for a = 2k − 1

4-5. Grid diagrams and grid graphs

6. [C. ’14] Jones polynomials of T (3, b) and T (5, b)

• Intuition (and pictures) behind the heavy notation
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1. Parametrizations

A Lissajous knot is of the form

x = cos(ηx t + φx ),

y = cos(ηy t + φy ),

z = cos(ηz t + φz),

where t , φi ∈ R,
ηi ∈ Z are coprime.

Not all knots are Lissajous, however,
e.g. torus knots and the figure eight.

Studied by, e.g., [Bogle-Hearst-Jones-Stoilov ’94],
[Jones-Przytycki ’98], [Przytycki ’98].
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1. Parametrizations

A harmonic knot is of the form x = Ta(t), y = Tb (t), z = Tc(t),

where t ∈ R, a, b , c ∈ Z are coprime [Comstock 1897] , and

Tn(cos t ′) = cos(nt ′) is the n-th Chebyshev poly (first kind).

Not all knots are harmonic, however.

Studied by [Koseleff-Pecker ’12]
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1. Parametrizations / Main Definition

A Chebyshev knot is x = Ta(t), y = Tb (t), z = Tc(t+ϕ),

where t ∈ R, a, b , c ∈ Z are coprime, ϕ ∈ R a constant, and

Tn(cos t ′) = cos(nt ′) is the n-th Chebyshev poly (first kind).

Proposition [Koseleff-Pecker ’11]:

All knots are Chebyshev. (More on this later.)
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2. Billiards

A billiard knot is the trajectory of a ball traveling in a 3D domain
at a straight line, reflecting perfectly off the walls at rational ∠.

Proposition [Jones-Przytycki ’98]:

Lissajous knots are precisely the billiard knots in a cube.

MakerHome: One 3D print every day from home, for a year

Monday, May 26, 2014: Day 273 - Lissajous conformation of 52.
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2. Billiards / Main Diagram

Chebyshev knots are examples of generalized billiard knots
in an a × b × c rectangular prism.

These can be projected onto billiard table diagrams T(a,b).

To simplify, we replace c, φ
with a string of +,− corresponding to the crossings.
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3. Natural indexing

A bridge is one of the arcs in a knot diagram.

The bridge index br(K ) of a knot K is the minimum number of
disjoint bridges which together include all over-crossings

OR equivalently the minimum number over all diagrams of local
maxima of the knot diagram taken with a Morse function.
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3. Natural indexing

Proposition [Koseleff-Pecker ’11]:

For knot K and br(K ) ≤ m ∈ N, K is some T (a, b)

where a = 2m − 1 and b ≡ 2 (mod 2a).

Theorem [Koseleff-Pecker ’11]:

Every knot has a projection that is a Chebyshev plane curve.
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3. Natural indexing

The class of 2-bridge knots can be completely described using
Conway notation [a,b,...,c,d].

d

c

b

a

d

cb

a

Because one can associate to this sequence a continued fraction,
they are also called rational knots.

p
q

=
1

a + 1
b+ 1

...+ 1
c+ 1

d
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3. Natural indexing

We can restrict our attention to T (3, b) to consider all
2-bridge knots together with the unknot

and T (5, b) to consider all 3-bridge knots
together with all 2-bridge knots and the unknot.
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4. Legendrian knots via grid diagrams

Rotate 45◦ and close the ends to obtain a grid diagram,

where the crossings are not necessarily right:

Fix the crossings and rotate back to obtain a Legendrian knot.
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5. Alexander polynomial via grid graphs

The “dimer” graph [C.-Dasbach-Russell ’14] for a billiard table
diagram is the popular grid graph from graph theory.

Dimer or perfect matching models on these grid graphs
also appear in statistical mechanics.

The Alexander polynomial can be swiftly computed from this
[C.-Dasbach-Russell ’14].
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6. Jones polynomials of 2- and 3-bridge knots

Consider T (a, b) with a = 3 or a = 5 and with b coprime.

Order the N crossings lexicographically.

Obtain a knot from a string of {+,−} of length N.

Goal [C. ’14]:

To compute the Jones polynomials directly from the string.

Want a notation that is sensitive to whether a crossing is ±.

Let fb be the Kauffman bracket polynomial 〈T (3, b)〉

and hb 〈T (5, b)〉.

We compute writhe at the end.
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6. Jones polynomials of 2- and 3-bridge knots

Apply the unoriented Skein relation

〈L〉 = A〈L0〉 + A−1〈L∞〉

Notation:

To each crossing assign some monomial:

If the ± crossing is smoothed vertically, use A±.

If the ± crossing is smoothed horizontally, use A∓.

If the ± crossing is resolved by Reidemeister move I, use f±2
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6. Jones polynomials of 2-bridge knots / Proof Idea

(. . . ,A±) (. . . , f∓2 ,A
∓)

where f±2 = −A∓3 is the Kauffman bracket polynomial of T (3, 2)
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6. Jones polynomials of 2-bridge knots / Intuition

Look at the “dimer graph” again to see the 2 × b grid graph.

The smoothings relate to the 2× (b − 1) and 2× (b − 2) grid graphs.
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6. Jones polynomials of 2-bridge knots / Main Theorem

Let C = [A±,A±] + [f∓2 ,A
∓] and substitute C from the left.

Theorem [C.]:

The Kauffman bracket polynomials fb of T (3, b) ⊇ {2-bridge knots}
obey the following recursion rules:

If a summand in fb−1 ends in ____ then it is a summand in fb :

(...,A±) with a C replacing the A±

(..., [f∓2 ,A
∓]) ending with A±

(...,C) with [C ,A±] + [A±, f∓2 ,A
∓] replacing the C.
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6. Jones polynomials of 2-bridge knots / # of terms

Proposition [C.]:

The # of terms in the expansion of fb is
(a sequence that is an offset by four of)

a(0) = 1,

a(1) = a(2) = 0,

a(n) = a(n − 2) + a(n − 3),

the Padovan sequence,

[A000931] in The On-Line Encyclopedia of Integer Sequences.
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6. Jones polynomials of 3-bridge knots / Proof Idea

Two of the four terms are just as before:

(. . . ,A±,A±) (. . . , f∓2 , f
∓
2 ,A

∓,A∓)
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6. Jones polynomials of 3-bridge knots / Proof Idea

The third term can itself be reduced:
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6. Jones polynomials of 3-bridge knots / Proof Idea

The fourth term gives a 2-tangle, but it can also itself be reduced.

Keep track of the two pairs of ends.
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6. Jones polynomials of 3-bridge knots / Proof Idea

Trick: these last two are really rectangles!
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6. Jones polynomials of 3-bridge knots / Partitions

Let Pn be the set of all partitions of the integer n into blocks Pi .

Recall δ = (−A2 − A−2) and f±2 = −A∓3 as above.

Set X = δ[A±,A±] + [A±,A∓] + [A∓,A±].

Let P1 = [A±,A±],

P2 = [f∓2 , f
∓
2 ,A

∓,A∓] + [A±, f∓2 ,A
±,A∓] + δ[A±,A±,A∓,A±]

+[A±,A∓,A∓,A±] + [A∓,A±,A∓,A±],

Pi =


[f∓2 ,A

±,A∓,A∓, [f∓2 ,A
∓,A∓,A∓]j ,A±,A∓]

+ [A±, [f∓2 , f
∓
2 ,A

∓,A∓]j+1,A±] for i = 2j + 3 and

[A±, [f∓2 , f
∓
2 ,A

∓,A∓]j , f∓2 ,A
±,A∓]

+ [X , [f∓2 ,A
∓,A∓,A∓]j ,A∓,A±] for i = 2j + 2.

* White lie: See P′i vs. P̃′i defined in my paper. Qi is similar.
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6. Jones polynomials of 3-bridge knots / Main Theorem

Main Theorem [C.]:

The Kauffman bracket polynomials hb of T (5, b) ⊇ {3-bridge knots}:

h1 = 1

h2 = (A±,A±) + δ(A±,A∓) + δ(A∓,A±) + δ2(A∓,A∓)

h3 = (h2,A±,A±) + (f∓2 , f
∓
2 ,A

∓,A∓) + (g2,A±,A∓) + (f∓2 , f
±
2 ,A

∓,A±)

and for b ≥ 4,

hb =
b−1∑
i=3

([h3,Pi−2] + [h2,Pi−1] + [Qi ],Pb−1−i).
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6. Jones polynomials of 3-bridge knots / # of terms

Proposition [C.]:

The # of terms in the expansion of hb is 2b−4.

Remark:

Note that this is far fewer than the usual 22(b−1) terms
using the Skein relation for the 2(b − 1) crossings of the diagram.
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6. Jones polynomials of 2-bridge knots / Writhe

Property [C.]:

The writhe w(T (3, b + 3)) =w(T (3, b)) + (±1) + (∓1) + (±1) when b ≡ 1 mod 3 and

w(T (3, b)) + (±1) + (±1) + (∓1) when b ≡ 2 mod 3,

corresponding to the signs of the three last crossings.
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6. Jones polynomials of 3-bridge knots / Writhe

Property [C.]:

The writhe w(T (5, b + 5)) =

w(T (5, b)) + (±1) + (±1) + (∓1) + (±1)

+(∓1) + (∓1) + (∓1) + (±1) + (±1) + (±1) b ≡ 1 mod 5 and 2|b,

w(T (5, b)) + (±1) + (±1) + (±1) + (∓1)

+(∓1) + (∓1) + (±1) + (∓1) + (±1) + (±1) b ≡ 1 mod 5 and 2 - b,
...

...

w(T (5, b)) + (±1) + (±1) + (±1) + (±1)

+(±1) + (∓1) + (∓1) + (∓1) + (±1) + (∓1) b ≡ 4 mod 5 and 2|b,

w(T (5, b)) + (±1) + (±1) + (±1) + (±1)

+(∓1) + (±1) + (∓1) + (∓1) + (∓1) + (±1) b ≡ 4 mod 5 and 2 - b,

corresponding to the signs of the ten last crossings.
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Conclusion

Reason 7:

Useful for random knots – see my talk [JMM, Tuesday 2pm 006D]

Thanks:
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