6 reasons to love
 Chebyshev knots and billiard table diagrams

Moshe Cohen

> Technion - Israel Institute of Technology www.technion.ac.il/~mcohen/

Knot Theory and Its App's to Physics and Quantum Computing, January 6th-9th, 2015

6 reasons to love
 Chebyshev knots and billiard table diagrams

Moshe Cohen

Technion - Israel Institute of Technology www.technion.ac.il/~mcohen/

Knot Theory and Its App's to Physics and Quantum Computing, January 6th-9th, 2015

Outline

1-3. Chebyshev knots $T(a, b)$ and billiard table diagrams

- [Koseleff-Pecker '11]

Present any k-bridge knot by $T(a, b)$ for $a=2 k-1$
$4-5$. Grid diagrams and grid graphs
6. [C. '14] Jones polynomials of $T(3, b)$ and $T(5, b)$

- Intuition (and pictures) behind the heavy notation

A Lissajous knot is of the form

$$
\begin{aligned}
& x=\cos \left(\eta_{x} t+\phi_{x}\right), \\
& y=\cos \left(\eta_{y} t+\phi_{y}\right), \\
& z=\cos \left(\eta_{z} t+\phi_{z}\right),
\end{aligned}
$$

where $t, \phi_{i} \in \mathbb{R}$, $\eta_{i} \in \mathbb{Z}$ are coprime.

Not all knots are Lissajous, however, e.g. torus knots and the figure eight.

Studied by, e.g., [Bogle-Hearst-Jones-Stoilov '94], [Jones-Przytycki '98], [Przytycki '98].

A harmonic knot is of the form $x=T_{a}(t), y=T_{b}(t), z=T_{c}(t)$, where $t \in \mathbb{R}, a, b, c \in \mathbb{Z}$ are coprime [Comstock 1897], and $T_{n}\left(\cos t^{\prime}\right)=\cos \left(n t^{\prime}\right)$ is the n-th Chebyshev poly (first kind).

Not all knots are harmonic, however.
Studied by [Koseleff-Pecker '12]

A Chebyshev knot is $x=T_{a}(t), y=T_{b}(t), z=T_{c}(t+\varphi)$, where $t \in \mathbb{R}, a, b, c \in \mathbb{Z}$ are coprime, $\varphi \in \mathbb{R}$ a constant, and $T_{n}\left(\cos t^{\prime}\right)=\cos \left(n t^{\prime}\right)$ is the n-th Chebyshev poly (first kind).

Proposition [Koseleff-Pecker '11]:
All knots are Chebyshev.
(More on this later.)

A billiard knot is the trajectory of a ball traveling in a 3D domain at a straight line, reflecting perfectly off the walls at rational \angle.

Proposition [Jones-Przytycki '98]:
Lissajous knots are precisely the billiard knots in a cube.

MakerHome: One 3D print every day from home, for a year
Monday, May 26, 2014: Day 273 - Lissajous conformation of 5 .

Chebyshev knots are examples of generalized billiard knots in an $a \times b \times c$ rectangular prism.
These can be projected onto billiard table diagrams $\mathbf{T}(\mathbf{a}, \mathbf{b})$.

To simplify, we replace c, ϕ with a string of,+- corresponding to the crossings.

A bridge is one of the arcs in a knot diagram.

The bridge index $\operatorname{br}(K)$ of a knot K is the minimum number of disjoint bridges which together include all over-crossings

OR equivalently the minimum number over all diagrams of local maxima of the knot diagram taken with a Morse function.

클

Proposition [Koseleff-Pecker '11]:

For knot K and $\operatorname{br}(K) \leq m \in \mathbb{N}, K$ is some $T(a, b)$
where $a=2 m-1$ and $b \equiv 2(\bmod 2 a)$.

Theorem [Koseleff-Pecker '11]:

Every knot has a projection that is a Chebyshev plane curve.

The class of 2-bridge knots can be completely described using Conway notation $[a, b, \ldots, c, d]$.

Because one can associate to this sequence a continued fraction, they are also called rational knots.

$$
\frac{p}{q}=\frac{1}{a+\frac{1}{b+\frac{1}{\cdots+\frac{1}{c+\frac{1}{d}}}}}
$$

We can restrict our attention to $T(3, b)$ to consider all 2-bridge knots together with the unknot

and $T(5, b)$ to consider all 3-bridge knots together with all 2-bridge knots and the unknot.

4. Legendrian knots via grid diagrams

Rotate 45° and close the ends to obtain a grid diagram, where the crossings are not necessarily right:

Fix the crossings and rotate back to obtain a Legendrian knot.

The "dimer" graph [C.-Dasbach-Russell '14] for a billiard table diagram is the popular grid graph from graph theory.

Dimer or perfect matching models on these grid graphs also appear in statistical mechanics.

The Alexander polynomial can be swiftly computed from this [C.-Dasbach-Russell '14].

Consider $T(a, b)$ with $a=3$ or $a=5$ and with b coprime.
Order the N crossings lexicographically.
Obtain a knot from a string of $\{+,-\}$ of length N.

Goal [C. '14]:
To compute the Jones polynomials directly from the string.
Want a notation that is sensitive to whether a crossing is \pm.

Let f_{b} be the Kauffman bracket polynomial $\langle T(3, b)\rangle$ and h_{b}
$\langle T(5, b)\rangle$.
We compute writhe at the end.

6. Jones polynomials of 2- and 3-bridge knots

Apply the unoriented Skein relation

$$
\langle L\rangle=A\left\langle L_{0}\right\rangle+A^{-1}\left\langle L_{\infty}\right\rangle
$$

Notation:

To each crossing assign some monomial:
If the \pm crossing is smoothed vertically, use $A^{ \pm}$.
If the \pm crossing is smoothed horizontally, use A^{\mp}.
If the \pm crossing is resolved by Reidemeister move I , use $f_{2}^{ \pm}$

$$
\left(\ldots, A^{ \pm}\right)
$$

$\left(\ldots, f_{2}^{\mp}, A^{\mp}\right)$
where $f_{2}^{ \pm}=-A^{\mp 3}$ is the Kauffman bracket polynomial of $T(3,2)$

Look at the "dimer graph" again to see the $2 \times b$ grid graph .

The smoothings relate to the $2 \times(b-1)$ and $2 \times(b-2)$ grid graphs.

Let $C=\left[A^{ \pm}, A^{ \pm}\right]+\left[f_{2}^{\mp}, A^{\mp}\right]$ and substitute C from the left.

Theorem [C.]:

The Kauffman bracket polynomials f_{b} of $T(3, b) \supseteq\{2$-bridge knots \} obey the following recursion rules:

If a summand in f_{b-1} ends in \qquad then it is a summand in f_{b} :
(..., $\left.A^{ \pm}\right)$with a C replacing the $A^{ \pm}$
(..., $\left.\left[f_{2}^{\mp}, A^{\mp}\right]\right)$ ending with $A^{ \pm}$
(\ldots, C) with $\left[C, A^{ \pm}\right]+\left[A^{ \pm}, f_{2}^{\mp}, A^{\mp}\right]$ replacing the C.

Proposition [C.]:

The \# of terms in the expansion of f_{b} is
(a sequence that is an offset by four of)

$$
\begin{gathered}
a(0)=1, \\
a(1)=a(2)=0, \\
a(n)=a(n-2)+a(n-3),
\end{gathered}
$$

the Padovan sequence,
[A000931] in The On-Line Encyclopedia of Integer Sequences.

Two of the four terms are just as before：

$\left(\ldots, A^{ \pm}, A^{ \pm}\right)$

$\left(\ldots, f_{2}^{\mp}, f_{2}^{\mp}, A^{\mp}, A^{\mp}\right)$

The third term can itself be reduced:

The fourth term gives a 2-tangle, but it can also itself be reduced.
Keep track of the two pairs of ends.

Trick: these last two are really rectangles!

Let \mathcal{P}_{n} be the set of all partitions of the integer n into blocks P_{i}.
Recall $\delta=\left(-A^{2}-A^{-2}\right)$ and $f_{2}^{ \pm}=-A^{\mp 3}$ as above.
Set $X=\delta\left[A^{ \pm}, A^{ \pm}\right]+\left[A^{ \pm}, A^{\mp}\right]+\left[A^{\mp}, A^{ \pm}\right]$.

$$
\begin{aligned}
& \text { Let } P_{1}=\left[A^{ \pm}, A^{ \pm}\right], \\
& \begin{array}{rlr}
P_{2}= & {\left[f_{2}^{\mp}, f_{2}^{\mp}, A^{\mp}, A^{\mp}\right]+\left[A^{ \pm}, f_{2}^{\mp}, A^{ \pm}, A^{\mp}\right]+\delta\left[A^{ \pm}, A^{ \pm}, A^{\mp}, A^{ \pm}\right]} \\
& +\left[A^{ \pm}, A^{\mp}, A^{\mp}, A^{ \pm}\right]+\left[A^{\mp}, A^{ \pm}, A^{\mp}, A^{ \pm}\right],
\end{array} \\
& P_{i}=\left\{\begin{array}{rr}
{\left[\begin{array}{cc}
f_{2}^{\mp}, & \left.A^{ \pm}, A^{\mp}, A^{\mp},\left[f_{2}^{\mp}, A^{\mp}, A^{\mp}, A^{\mp}\right]^{j}, A^{ \pm}, A^{\mp}\right] \\
& +\left[A^{ \pm},\left[f_{2}^{\mp}, f_{2}^{\mp}, A^{\mp}, A^{\mp}\right]^{+1}, A^{ \pm}\right]
\end{array}\right.} & \text {for } i=2 j+3 \text { and } \\
{\left[\begin{array}{rl}
\pm \pm \\
& \left.\left[f_{2}^{\mp}, f_{2}^{\mp}, A^{\mp}, A^{\mp}\right]^{j}, f_{2}^{\mp}, A^{ \pm}, A^{\mp}\right] \\
& +\left[X,\left[f_{2}^{\mp}, A^{\mp}, A^{\mp}, A^{\mp}\right]^{j}, A^{\mp}, A^{ \pm}\right]
\end{array}\right.} & \text {for } i=2 j+2 .
\end{array}\right.
\end{aligned}
$$

* White lie: See P_{i}^{\prime} vs. $\widetilde{P}_{i}^{\prime}$ defined in my paper. Q_{i} is similar.

Main Theorem [C.]:

The Kauffman bracket polynomials h_{b} of $T(5, b) \supseteq\{3$-bridge knots $\}$:

$$
\begin{aligned}
& h_{1}=1 \\
& h_{2}=\left(A^{ \pm}, A^{ \pm}\right)+\delta\left(A^{ \pm}, A^{\mp}\right)+\delta\left(A^{\mp}, A^{ \pm}\right)+\delta^{2}\left(A^{\mp}, A^{\mp}\right) \\
& h_{3}=\left(h_{2}, A^{ \pm}, A^{ \pm}\right)+\left(f_{2}^{\mp}, f_{2}^{\mp}, A^{\mp}, A^{\mp}\right)+\left(g_{2}, A^{ \pm}, A^{\mp}\right)+\left(f_{2}^{\mp}, f_{2}^{ \pm}, A^{\mp}, A^{ \pm}\right)
\end{aligned}
$$

and for $b \geq 4$,

$$
h_{b}=\sum_{i=3}^{b-1}\left(\left[h_{3}, P_{i-2}\right]+\left[h_{2}, P_{i-1}\right]+\left[Q_{i}\right], \mathcal{P}_{b-1-i}\right) .
$$

6. Jones polynomials of 3-bridge knots / \# of terms

Proposition [C.]:

The \# of terms in the expansion of h_{b} is 2^{b-4}.

Remark:

Note that this is far fewer than the usual $2^{2(b-1)}$ terms using the Skein relation for the $2(b-1)$ crossings of the diagram.

Property [C.]:

The writhe $w(T(3, b+3))=$

$$
\begin{cases}w(T(3, b))+(\pm 1)+(\mp 1)+(\pm 1) & \text { when } b \equiv 1 \quad \bmod 3 \text { and } \\ w(T(3, b))+(\pm 1)+(\pm 1)+(\mp 1) & \text { when } b \equiv 2 \quad \bmod 3\end{cases}
$$

corresponding to the signs of the three last crossings.

Property [C.]:

The writhe $w(T(5, b+5))=$

$$
\left\{\begin{array}{cc}
w(T(5, b))+(\pm 1)+(\pm 1)+(\mp 1)+(\pm 1) & \\
\quad+(\mp 1)+(\mp 1)+(\mp 1)+(\pm 1)+(\pm 1)+(\pm 1) & b \equiv 1 \bmod 5 \text { and } 2 \mid b, \\
w(T(5, b))+(\pm 1)+(\pm 1)+(\pm 1)+(\mp 1) & \\
\quad+(\mp 1)+(\mp 1)+(\pm 1)+(\mp 1)+(\pm 1)+(\pm 1) & b \equiv 1 \bmod 5 \text { and } 2 \nmid b, \\
\quad \vdots & \vdots \\
w(T(5, b))+(\pm 1)+(\pm 1)+(\pm 1)+(\pm 1) & \\
\quad+(\pm 1)+(\mp 1)+(\mp 1)+(\mp 1)+(\pm 1)+(\mp 1) & b \equiv 4 \bmod 5 \text { and } 2 \mid b, \\
w(T(5, b))+(\pm 1)+(\pm 1)+(\pm 1)+(\pm 1) & \\
& +(\mp 1)+(\pm 1)+(\mp 1)+(\mp 1)+(\mp 1)+(\pm 1)
\end{array}\right) b \equiv 4 \bmod 5 \text { and } 2 \nmid b,
$$

corresponding to the signs of the ten last crossings.

Conclusion

Reason 7:

Useful for random knots - see my talk [JMM, Tuesday 2pm 006D]

Thanks:

to Pierre-Vincent Koseleff as well as to

Supported in part by the funding from the European Research Council under the European Union's Seventh Framework Programme, Grant FP7-ICT-318493-STREP.
(Vaughan F. R. Jones and Józef H. Przytycki, Lissajous knots and billiard knots, Knot theory (Warsaw, 1995), Banach Center Publ., vol. 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 145-163.

雷 Józef H. Przytycki, Symmetric knots and billiard knots, Ideal knots, Ser. Knots Everything 19,
World Sci. Publ., 1998, pp. 374-414.
Moshe Cohen, Oliver T. Dasbach, and Heather M. Russell, A twisted dimer model for knots, Fundam. Math. 225 (2014), no. 1, 57-74.

嗇 Moshe Cohen, The Jones polynomials of 3-bridge knots via Chebyshev knots and billiard table diagrams, arXiv:1409.6614, 2014.

