Dimer Models for the Alexander and Twisted Alexander Polynomials of Knots

Moshe Cohen
(Joint with Oliver Dasbach, Heather M. Russell)

Department of Mathematics and Computer Science
Bar-llan University www.math.biu.ac.il/~cohenm10/

11th Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics and Algorithms, May 18th, 2011

Outline

(1) The dimer model and matrices

- Domino tilings and perfect matchings
- Obtaining a determinant by a Kasteleyn weighting
- Applying these ideas to knot theory
(2) Dimer model for the Alexander polynomial
- Sign Conventions
- Example: the Trefoil
(3) Twisted Dimer model for the twisted Alexander polynomial
- Sign Conventions
- Example: the Trefoil
- Future directions

Warmup

Question: How many different ways can we tile a $2 \times n$ gameboard with 2×1 dominos?

Warmup

Question: How many different ways can we tile a $2 \times n$ gameboard with 2×1 dominos?

$: n=1$

Warmup

Question: How many different ways can we tile a $2 \times n$ gameboard with 2×1 dominos?

Warmup

Question: How many different ways can we tile a $2 \times n$ gameboard with 2×1 dominos?

$$
n=3:
$$

Warmup

Answer: The number of ways $f(n)$ satisfies

$$
f(n-2)+f(n-1)=f(n) .
$$

: $n-2$

$$
n-1:
$$

$n:$

Warmup

Answer: The number of ways $f(n)$ satisfies

$$
f(n)=f(n-2)+f(n-1)
$$

: $n-2$

$$
n-1:
$$

n :

Thus we get

$f(n)$ is
the n-th

Fibonacci
number!

From combinatorics to statistics

Combinatorialists ask how many ways to domino tile general gameboards

The dimer model and matrices
Dimer model for the Alexander polynomial Twisted Dimer model for the twisted Alexander polynomial

From combinatorics to statistics

Combinatorialists ask how many ways to domino tile general gameboards (and aztec diamonds).

The dimer model and matrices
Dimer model for the Alexander polynomial Twisted Dimer model for the twisted Alexander polynomial

From combinatorics to statistics

Graph theorists look at the perfect matchings of associated bipartite graphs.

The dimer model and matrices

From combinatorics to statistics

Graph theorists look at the perfect matchings of associated bipartite graphs.

A perfect matching μ

is a collection
of non-incident edges
that covers the graph.

The dimer model and matrices
Dimer model for the Alexander polynomial Twisted Dimer model for the twisted Alexander polynomial

From combinatorics to statistics

Physicists in statistical mechanics ask about the probability of achieving certain states.

The dimer model and matrices

From combinatorics to statistics

Physicists in statistical mechanics ask about the probability of achieving certain states.

A dimer is just an edge.
A dimer covering
is a collection
of non-incident dimers
that covers the graph.

The dimer model and matrices
Dimer model for the Alexander polynomial Twisted Dimer model for the twisted Alexander polynomial

From combinatorics to statistics

Now let's ask for the complete list of tilings and not just the number of them.

From combinatorics to statistics

We use an idea from

the generalization of
the Matrix Tree Theorem.
So let's look at
matrices from the graphs.

Now let's ask for the complete list of tilings and not just the number of them.

Matrices from graphs: the Matrix Tree Theorem

Consider the diagonal matrix D where $d_{i j}=\operatorname{deg} v_{i}$, and let A be the adjacency matrix of the graph.

Matrix Tree Theorem (Kirchhoff):

The determinant of any cofactor of the matrix $D-A$ gives the number of spanning trees of the graph.

The spanning trees themselves can be recovered by using variables to represent the edges in this matrix.

The dimer model and matrices
Dimer model for the Alexander polynomial Twisted Dimer model for the twisted Alexander polynomial

Matrices from graphs: bipartite adjacency matrix

Consider the adjacency matrix of the given bipartite graph Γ.

$$
\left(\begin{array}{c|c}
0 & M \\
\hline M^{T} & 0
\end{array}\right)
$$

Call M the bipartite adjacency submatrix.

	e_{13}					
e_{22}		e_{24}				
	e_{33}	e_{34}	e_{35}			
e_{42}		e_{44}		e_{46}		
	e_{53}		e_{55}		e_{57}	
		e_{64}	e_{65}	e_{66}		e_{68}
			e_{75}		e_{77}	e_{78}
				e_{86}		e_{88}

Matrices from graphs: determinant and permanent

Recall the determinant of a matrix $M=\left(m_{i j}\right)$

$$
\operatorname{det}(M)=\sum_{\sigma \in \mathfrak{S}} \prod_{i}(-1)^{\operatorname{sign}(\sigma)} m_{i \sigma(i)}
$$

The permanent or unsigned determinant is

$$
\operatorname{perm}(M)=\sum_{\sigma \in \mathfrak{S}} \prod_{i} m_{i \sigma(i)}
$$

Matrices from graphs: determinant and permanent

Proposition:

The terms in the permanent expansion of a bipartite adjacency submatrix associated with a bipartite graph give the complete list of perfect matchings of the graph.

Proof:

Each term in the permanent expansion is a permutation σ matching each vertex i in the first vertex set to a vertex $\sigma(i)$ in the second vertex set. \square

Kasteleyn weighting: signing the edges

A Kasteleyn weighting of a plane bipartite graph is a signing of the edges such that \# negatives around a particular face is

- odd if the face has length $0 \bmod 4$ or
- even if the face has length $2 \bmod 4$.

Lemma:
Suppose G has a Kasteleyn weighting. Then so does $G \backslash e$.

Kasteleyn weighting: signing the edges

Proposition:

The determinant expansion of a bipartite adjacency submatrix associated with a Kasteleyn-weighted bipartite graph gives the complete list of perfect matchings up to sign.

Proof:

Two permutations differ by a transposition \longleftrightarrow
\exists four non-zero terms in a rectangle in the matrix \longleftrightarrow
\exists a square face in the graph.
\exists ! negative sign in each square, so these have opposite signs in both the matrix and the perfect matching. \square

Main Results

Theorem 1:

Let Γ be a balanced overlaid Tait graph associated with K. Then

$$
\sum_{m} \prod_{e \in m} \mu(e) \doteq \Delta_{K}(t)
$$

the Alexander polynomial of K up to sign and a power of t.
(over all perfect matchings m and all edges in each).

Main Results

Theorem 2:

Let Γ_{ρ} be the p-lift obtained from Γ for K and ρ. Then

$$
\sum_{m} \prod_{e \in m} \mu(e) \doteq W_{K}(t),
$$

the twisted Alexander polynomial of K with representation ρ up to sign and a power of t (over all perfect matchings m and all edges in each).

Background in knot theory

A knot K is S^{1} embedded in $\mathbb{R}^{3} \cup \infty$. We orient the knot.
A knot diagram D is the projection of the knot onto \mathbb{R}^{2} with under- and over-crossing information.

Theorem (Reidemeister 1926):
Two diagrams represent the same knot \Leftrightarrow
\exists a sequence of Reidemeister moves taking one to the other.

The dimer model and matrices
Dimer model for the Alexander polynomial Twisted Dimer model for the twisted Alexander polynomial

Background in knot theory

RMI:

A knot invariant is an evaluation on a knot diagram that is constant under each of the three Reidemeister moves.

Why study knots?

Understanding low-dimensional topology:

- Topological quantum field theory gives 2-manifolds.
- Surgery on knots gives 3-manifolds.
- TQFT again gives 4-manifolds.
- Hyperbolic geometery triangulates knot complements.
- Number theory recognizes these hyperbolic volumes.

By applying techniques from graph theory:

- Need only study plane graphs!
- Nice properties emerge from the four-valent crossings.
- Tables of (small) knot diagrams can be found online.

Domino tilings and perfect matchings

Graphs from knots: the signed Tait graph G

A signed graph has edges weighted +1 or -1 .
Checkerboard color the regions of a knot diagram D.

Definition:

The signed Tait graph G associated with D has
$V(G)=\{$ colored regions $\}$ and $E(G)=\{$ crossings of $D\}$.
positive

negative

Note that the dual G^{*} comes from the uncolored regions.

The dimer model and matrices

Domino tilings and perfect matchings
Obtaining a determinant by a Kasteleyn weighting Applying these ideas to knot theory

Graphs from knots: the signed Tait graph G

Given a knot diagram,

Graphs from knots: the signed Tait graph G

checkerboard color the regions to get vertices

The dimer model and matrices Dimer model for the Alexander polynomial Twisted Dimer model for the twisted Alexander polynomial

Graphs from knots: the signed Tait graph G

and sign the edges through the crossings

Graphs from knots: the signed Tait graph G

to obtain the signed Tait graph G.

The dimer model and matrices
Dimer model for the Alexander polynomial
Twisted Dimer model for the twisted Alexander polynomial

Graphs from knots: the signed Tait graph G

Graphs from knots: the signed Tait graph G

to obtain the signed dual Tait graph G^{*}.

Graphs from knots: the overlaid Tait graph $\widehat{\Gamma}$

Definition:

The overlaid Tait graph $\widehat{\Gamma}$ associated with D is bipartite with $V(\widehat{\Gamma})=\left[E(G) \cap E\left(G^{*}\right)\right] \sqcup\left[V(G) \sqcup V\left(G^{*}\right)\right]$ and $E(\widehat{\Gamma})$ the half-edges of G and G^{*}.

Each face in the overlaid Tait graph $\widehat{\Gamma}$ is a square.

The dimer model and matrices
Dimer model for the Alexander polynomial Twisted Dimer model for the twisted Alexander polynomial

Graphs from knots: the overlaid Tait graph $\widehat{\Gamma}$

The dimer model and matrices
Dimer model for the Alexander polynomial Twisted Dimer model for the twisted Alexander polynomial

Graphs from knots: the overlaid Tait graph $\widehat{\Gamma}$

Graphs from knots: the balanced overlaid Tait graph Γ

Definition:

The balanced overlaid Tait graph \ulcorner associated with D is obtained from $\hat{\Gamma}$ by removing two vertices from the larger set that lie on the same face:

"Balanced" means the two vertex sets are the same size.

The dimer model and matrices

Graphs from knots: the balanced overlaid Tait graph Γ

Graphs from knots: the balanced overlaid Tait graph Γ

to obtain the balanced overlaid Tait graph Γ.

The Alexander polynomial $\Delta_{K}(t)$

The Alexander polynomial $\Delta_{K}(t)$, a Laurent poly in $\mathbb{Z}\left[t^{ \pm \frac{1}{2}}\right]$, can be defined as the determinant of the Alexander matrix.

Compute the Fox partial derivatives of the relations with respect to the generators of the Dehn presentation for the fundamental group $\pi_{1}\left(S^{3}-K\right)$ of the knot complement.

After abelianization, this amounts to the following local information about each crossing:

Furthermore, Kauffman's trick of assigning one minus sign at each crossing satisfies Kasteleyn's weighting:

Example: the Alexander Dimer for the Trefoil

The bipartite graph for the Trefoil.

Example: the Alexander Dimer for the Trefoil

Labeling at each of the crossings.

Example: the Alexander Dimer for the Trefoil

Kauffman's trick to yield a Kasteleyn weighting.

Example: the Alexander Dimer for the Trefoil

One perfect matching, yielding $(t)(1)(t)=t^{2}$.

Example: the Alexander Dimer for the Trefoil

A second perfect matching, yielding $(t)(1)(-1)=-t$.

Example: the Alexander Dimer for the Trefoil

The third and last perfect matching, yielding $(1)(-1)(-1)=1$.

Example: the Alexander Dimer for the Trefoil

The Alexander polynomial is $\Delta_{L}(t)=t^{2}-t+1$.

The twisted Alexander polynomial $W_{K}(t)$

The twisted Alexander polynomial $W_{K}(t)$, a poly in $R\left[t^{ \pm 1}\right]$, can be defined as the determinant of the Alexander matrix after twisting by representation $\gamma: \pi_{1}\left(S^{3}-K\right) \rightarrow G L_{p}(\mathbb{Z})$.

Replace each entry of the original Alexander matrix with a $p \times p$ block carrying the representation above.

We can use the following local information about each crossing:

Replace each original vertex with p copies, and replace each edge with p edges, twisting as necessary.

Relating the two dimer models

Suppose the graph Γ is obtained from a knot diagram, and let Γ_{ρ} be obtained from Γ together with the representation ρ.

Definition:

A p-lift of a graph on n vertices is a graph on $p n$ vertices with a covering map.

Proposition:

By construction, Γ_{ρ} is a p-lift of Γ.

In order to use Kauffman's trick as before, we need to take care of crossings coming from the "twists".

We use Kuperberg's triple splitting and butterfly tricks:

The Trefoil with a representation coming from a coloring.

The bipartite graph untwisted into a plane graph.

One perfect matching, yielding
$(1)(1)(t)(t)(-1)(1)(1)(1)(-t)=t^{3}$.

A second perfect matching, yielding

$$
(-t)(1)(t)(t)(-1)(1)(1)(1)(-t)=-t^{4} .
$$

A fourth perfect matching, yielding

$$
(-t)(1)(t)(t)(-1)(1)(1)(1)(1)=t^{3} .
$$

A fifth perfect matching, yielding
$(1)(1)(t)(t)(1)(t)(t)(1)(-t)=-t^{5}$.

A sixth perfect matching, yielding $(-t)(1)(t)(t)(1)(t)(t)(1)(-t)=t^{6}$.

A seventh perfect matching, yielding
$(1)(1)(1)(1)(1)(1)(1)(1)(-t)=-t$.

An eighth perfect matching, yielding
$(1)(1)(1)(1)(1)(1)(1)(1)(1)=1$.

The dimer model and matrices

Example: the Alexander Dimer for the Trefoil

The twisted Alexander polynomial is $W_{L}(t)=t^{6}-t^{5}-t^{4}+2 t^{3}-t^{2}-t+1$.

Future directions

Open Question:

What can the combinatorics of Γ_{ρ} tell us about the representation ρ ?

Conjecture:

Reducible representations give disconnected Γ_{ρ}.

Open Questions:

What can the study of random lifts of a graph Γ tell us about the possible representations ρ of the knot that gives Γ ?
What else might a random lift model tell us here?

